Effectiveness Evaluation of Signals Consecutive Fusion

Abstract

The article deals with modeling and evaluating the effectiveness of sequential integration of signals from unequal information systems that measure the true signal. The signals of information systems were modeled as a harmonic signal with additive Gaussian noise, and the modeling process itself as a sequence of operations: generating a true signal, measuring it by an information system, receiving signals from the information system that go to the first fusion block, and optimal integration in the second fusion block. The first fusion block is an algorithm for calculating the weights of information systems signals, which take into account both the signal quality itself (the accuracy of measuring the true signal) and the quality of the information systems themselves, which is due to the initial unequal accuracy of the latter. The second fusion block is an optimal algorithm for processing the signals weighted in the first block, using the least squares method to obtain the total signal fusion. Since the process of measuring a quantity is of a statistical nature, 1000 realizations of measurement were simulated to evaluate the effectiveness. Modeling has shown the effectiveness of the proposed approach: if the accuracy of the fusioned signal after the first block fluctuates about 30%, then the gain from using also the optimal fusion allows increasing the gain on average to 82.

Author Biography

Anton Valerevich Gorin, KBP Instrument Design Bureau

Lead Research Engineer

References

1. Ponyatsky V.M., Gorin A.V. A determination for mode of operations and for weight coefficients by fusing. Izvestija Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki = News of the Tula state university. Technical sciences. 2019; (4):272-276. Available at: https://elibrary.ru/item.asp?id=38187536 (accessed 26.08.2021). (In Russ., abstract in Eng.)
2. Ponyatsky V.M., Gorin A.V. Determining the Structure of the Information System based on the Use of Fuzzy Logic. Sovremennye informacionnye tehnologii i IT-obrazovanie = Modern Information Technologies and IT-Education. 2019; 15(3):645-653. (In Russ., abstract in Eng.) doi: https://doi.org/10.25559/SITITO.15.201903.645-653
3. Ponyatsky V.M., Gorin A.V. Signal fusing of unequal accuracy information system based on fuzzy logic. International Journal of Open Information Technologies. 2019; 7(3):25-31. Available at: https://elibrary.ru/item.asp?id=37112821 (accessed 26.08.2021). (In Russ., abstract in Eng.)
4. Ponyatsky V.M., Gorin A.V. Vybor rezhima raboty pri kompleksirovanii informacionnyh sistem na osnove nechetkoj logiki [Choosing a mode of operation when fusioning information systems based on fuzzy logic]. XIII All-Russia Control Conference (VSPU-2019). IPU RAS, Moscow; 2019. p. 2445-2450. (In Russ., abstract in Eng.) doi: https://doi.org/10.25728/vspu.2019.2445
5. Pogorelsky S.L., Ponyatsky V.M., Makaretsky E.A., Gublin A.S., Ovchiinikov A.V. Enhance the accuracy parameters of the object in the image, based on algorithmic complex information processing. Izvestija Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki = News of the Tula state university. Technical sciences. 2016; (12-2):147-154. Available at: https://elibrary.ru/item.asp?id=27471905 (accessed 26.08.2021). (In Russ., abstract in Eng.)
6. Egorov D.B., Makaretskiy E.A., Ponyatskiy V.M. The definition of crossing trajectories in sequence video frames. Izvestija Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki = News of the Tula state university. Technical sciences. 2013; (6-2): 200-205. Available at: https://elibrary.ru/item.asp?id=21436516 (accessed 26.08.2021). (In Russ., abstract in Eng.)
7. Pogorelsky S.L., Ponyatsky V.M., Egorov D.B., Makaretsky E.A., Ovchinnikov A.V., Gublin A.S. Izvestija Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki = News of the Tula state university. Technical sciences. 2016; (12-2):135-147. Available at: https://elibrary.ru/item.asp?id=27471903 (accessed 26.08.2021). (In Russ., abstract in Eng.)
8. Makaretsky E.A., Eremin N.N., Ponyatsky V.M. Metod povyshenija jeffektivnosti segmentacii v sisteme slezhenija za transportnymi potokami [A method of increase in efficiency of segmentation in the system of tracking traffic flows]. Proceedings of the IX International conference "Recognition ‒ 2010". Optical-electronic devices and devices in the systems of recognition of images, processing of images and symbolical information. SWSU, Kursk; 2010. p. 39-41. Available at: https://elibrary.ru/item.asp?id=27725926 (accessed 26.08.2021). (In Russ.)
9. Galangte A.I., Ponyatsky V.M., Makaretsky E.A. Features of design of algorithms of processing of images in television measuring systems. Proceedings of the conference on Modelling of Aviation Systems. GosNIIAS, Moscow; 2011. p. 121-127. Available at: https://elibrary.ru/item.asp?id=21000524 (accessed 26.08.2021). (In Russ.)
10. Pogorelski S.L., Chinaryov A.V., Semikozov A.M. A complex approach to image enhancement of television and infrared devices. Izvestija Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki = News of the Tula state university. Technical sciences. 2012; (7):291-296. Available at: https://elibrary.ru/item.asp?id=18940853 (accessed 26.08.2021). (In Russ., abstract in Eng.)
11. Zaitsev D.A., Sarbei V.G., Sleptsov A.I. Synthesis of continuous-valued logic functions defined in tabular form. Cybernetics and Systems Analysis. 1998; 34(2):190-195. (In Eng.) doi: https://doi.org/10.1007/BF02742068
12. Babuška R. Fuzzy Modeling for Control. International Series in Intelligent Technologies. Vol. 12. Springer Dordrecht; 1998. 260 p. (In Eng.) doi: https://doi.org/10.1007/978-94-011-4868-9
13. Filo G. Modelling of fuzzy logic control system using the MATLAB SIMULINK program. Czasopismo Techniczne. Mechanika = Technical Transactions. Mechanics. 2010; 2(8):73-81. Available at: https://repozytorium.biblos.pk.edu.pl/resources/32840 (accessed 26.08.2021). (In Eng.)
14. Kovacic Z., Faulkner L., Bogdan S. Fuzzy Controller Design: Theory and Applications. 1st ed. USA, CRC Press; 2005. 416 p. (In Eng.) doi: https://doi.org/10.1201/9781420026504
15. Bukhalyov V.A. Optimal'noe sglazhivanie v sistemah so sluchajnoj skachkoobraznoj strukturoj [Optimum smoothing in systems with accidental spasmodic structure]. Fizmatlit, Moscow; 2013. 188 p. Available at: https://elibrary.ru/item.asp?id=24056531 (accessed 26.08.2021). (In Russ.)
16. Fikhtengolts G.M. Kurs differencial'nogo i integral'nogo ischislenija [Course of differential and integral calculus]. Vol. 1. 8th ed. Fizmatlit, Moscow; 2003. 679 p. Available at: https://elibrary.ru/item.asp?id=19442791 (accessed 26.08.2021). (In Russ.)
17. Buckley J.J., Eslami E. An Introduction to Fuzzy Logic and Fuzzy Sets. Advances in Intelligent and Soft Computing. Vol. 13. Physica Heidelberg; 2002. 285 p. (In Eng.) doi: https://doi.org/10.1007/978-3-7908-1799-7
18. Běhounek L., Cintula P. Fuzzy logics as the logics of chains. Fuzzy Sets and Systems. 2006; 157(5):604-610. (In Eng.) doi: https://doi.org/10.1016/j.fss.2005.10.005
19. Dadios E.P. Fuzzy Logic ‒ Algorithms, Techniques and Implementations. IntechOpen, London; 2012. 296 p. (In Eng.) doi: https://doi.org/10.5772/2663
20. Nguyen H., Wu B. Fundamentals of Statistics with Fuzzy Data. Studies in Fuzziness and Soft Computing. Vol. 198. Springer Berlin, Heidelberg; 2006. 196 p. (In Eng.) doi: https://doi.org/10.1007/11353492
21. McNeill F.M., Thro E. Fuzzy Logic: A Practical Approach. Academic Press; 1994. 1st ed. 309 p. (In Eng.) doi: https://doi.org/10.1016/C2013-0-11164-6
22. Chen G., Pham T.T. Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems. USA, CRC Press, 2019; 328 p. (In Eng.)
23. Jin Ya. Advanced Fuzzy Systems Design and Applications. Studies in Fuzziness and Soft Computing. Vol. 112. Springer Physica-Verlag, Warsaw; 2003. 272 p. (In Eng.) doi: https://doi.org/10.1007/978-3-7908-1771-3
24. Buckley J. Simulating Fuzzy Systems. Studies in Fuzziness and Soft Computing. Vol. 171. Springer, Warsaw; 2005. 208 p. (In Eng.) doi: https://doi.org/10.1007/b100371
25. Viertl R. Statistical Methods for Fuzzy Data. John Wiley & Sons, New Delhi; 2011. 270 p. (In Eng.) doi: https://doi.org/10.1002/9780470974414
Published
2021-12-20
How to Cite
GORIN, Anton Valerevich. Effectiveness Evaluation of Signals Consecutive Fusion. Modern Information Technologies and IT-Education, [S.l.], v. 17, n. 4, p. 838-846, dec. 2021. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/800>. Date accessed: 02 aug. 2025. doi: https://doi.org/10.25559/SITITO.17.202104.838-846.
Section
Cognitive information technologies in control systems