Application of Predictive Control to Optimize Dynamic Processes in a Given Range

Abstract

The problem of digital control of controlled variables for a dynamic process with their retention in a given range is considered. It is assumed that the change of variables within the range can be arbitrary, but the values of variables must remain within the established boundaries. At the same time, if all the constraints are met, then the control should either be turned off or have as little intensity as possible. This formulation of the problem requires the development of special methods for the synthesis of control laws, different from traditional approaches in which the control goal is set by a command signal.
A formalized formulation of the control synthesis problem is performed for a nonlinear object model specified in discrete time, taking into account constraints on the control signal. A method of synthesis of the digital control law based on the use of predictive models in the feedback loop is proposed. The goal of object control is achieved by introducing a quadratic quality functional, including a penalty for violation of a specified range by controlled variables. In addition, this functionality characterizes the intensity of the control operation and allows adjusting energy costs using a weight multiplier. It is shown that the implementation of the control law in real time in the general case is reduced to solving the problem of nonlinear programming at each sample instant of discrete time. The effectiveness of the developed approach is illustrated by an example of controlling the oil refining process in a distillation column.

Author Biography

Margarita Victorovna Sotnikova, Saint-Petersburg State University

Head of the Chair of Computer Applications and Systems, Faculty of Applied Mathematics and Control Processes, Dr.Sci. (Phys.-Math.), Professor

References

1. Allgöwer F., Zheng A. Nonlinear Model Predictive Control. Progress in Systems and Control Theory. Birkhäuser Basel; 2000. 472 p. (In Eng.) doi: https://doi.org/10.1007/978-3-0348-8407-5
2. Kouvaritakis B., Cannon M. Model Predictive Control: Classical, Robust and Stochastic. Springer Cham; 2016. 384 p. (In Eng.) doi: https://doi.org/10.1007/978-3-319-24853-0
3. Raković S.V., Levine W.S. (eds.) Handbook of Model Predictive Control. Control Engineering. Birkhäuser, Cham; 2019. 692 p. (In Eng.) doi: https://doi.org/10.1007/978-3-319-77489-3
4. Lahiri S.K. Multivariable Predictive Control: Applications in Industry. Hoboken, NJ, USA: John Wiley & Sons, 2017. 304 p. (In Eng.)
5. Sotnikova M. Plasma stabilization based on model predictive control. International Journal of Modern Physics A. 2009; 24(5):999-1008. (In Eng.) doi: https://doi.org/10.1142/S0217751X09044450
6. Sotnikova M.V. Sintez robastnykh algoritmov upravleniya s prognoziruyushchimi modelyami [Robust model predictive control algorithm synthesis]. Sistemy upravleniya i informatsionnyye tekhnologii = Automation and Remote Control. 2012; (4):99-102. Available at: https://elibrary.ru/item.asp?id=18367018 (accessed 21.09.2021). (In Russ., abstract in Eng.)
7. Sotnikova M. Ship Dynamics Control using Predictive Models. IFAC Proceedings Volumes. 2012; 45(27):250-255. (In Eng.) doi: https://doi.org/10.3182/20120919-3-IT-2046.00043
8. Sotnikova M. Control System Design for Visual Positioning of a Ship Based on NMPC and Multi-objective Structure. IFAC-PapersOnLine. 2018; 51(32):445-450. (In Eng.) doi: https://doi.org/10.1016/j.ifacol.2018.11.425
9. Sotnikova M.V., Veremey E.I. Dynamic Positioning Based on Nonlinear MPC. IFAC Proceedings Volumes. 2013; 46(33):37-42. (In Eng.) doi: https://doi.org/10.3182/20130918-4-JP-3022.00058
10. Aleksandrov A., Chen Y., Platonov A., Zhang L. Stability analysis and uniform ultimate boundedness control synthesis for a class of nonlinear switched difference systems. Journal of Difference Equations and Applications. 2012; 18(9):1545-1561. (In Eng.) doi: https://doi.org/10.1080/10236198.2011.581665
11. Donzellini G., Oneto L., Ponta D., Anguita D. Introduction to Digital Systems Design. Springer International Publishing; 2019. 536 p. (In Eng.) doi: https://doi.org/10.1007/978-3-319-92804-3
12. Landau I.D., Zito G. Digital Control Systems: Design, Identification and Implementation. London: Springer-Verlag; 2006. 484 p. (In Eng.) doi: https://doi.org/10.1007/978-1-84628-056-6
13. Burdick D.L., Leffler W.L. Petrochemicals in Nontechnical Language. Oklahoma, USA, PennWell Publ. Company; 1990. 347 p. (In Eng.)
14. Corriou J.P. Distillation Column Control. In: Corriou J.P. (ed.) Process Control. Springer, Cham; 2018. p. 793-819. (In Eng.) doi: https://doi.org/10.1007/978-3-319-61143-3_20
15. Sotnikova M.V. Sintez tsifrovogo upravleniya s prognozom dlya uderzhaniya kontroliruyemykh peremennyh v zadannom diapazone [Digital control design based on predictive models to keep the controlled variables in a given range]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes. 2019; 15(3):397-409. (In Russ., abstract in Eng.) doi: https://doi.org/10.21638/11702/spbu10.2019.309
16. Sørensen A.J. A survey of dynamic positioning control systems. Annual Reviews in Control. 2011; 35(1):123-136. (In Eng.) doi: https://doi.org/10.1016/j.arcontrol.2011.03.008
17. Veremey E.I. Synthesis of Multi-objective Control Laws for Ship Motion. Gyroscopy and Navigation. 2010; 1(2):119-125. (In Eng.) doi: https://doi.org/10.1134/S2075108710020069
18. Camacho E.F., Bordons C. Model Predictive Control. Advanced Textbooks in Control and Signal Processing. 2nd ed. London: Springer-Verlag; 2007. 405 p. (In Eng.) doi: https://doi.org/10.1007/978-0-85729-398-5
19. Tuna S.E., Sanfelice R.G., Messina M.J., Teel A.R. Hybrid MPC: Open-Minded but Not Easily Swayed. In: Findeisen R., Allgöwer F., Biegler L.T. (eds.) Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences. Vol. 358. Springer, Berlin, Heidelberg; 2007. p. 17-34. (In Eng.) doi: https://doi.org/10.1007/978-3-540-72699-9_2
20. Veremey E.I., Sotnikova M.V. Visual Image Based Dynamical Positioning Using Control Laws with Multipurpose Structure. IFAC Proceedings Volumes. 2015; 48(16):184-189. (In Eng.) doi: https://doi.org/10.1016/j.ifacol.2015.10.278
21. Nocedal J., Wright S.J. Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Second Edition. Springer, New York, NY; 2006. 664 p. (In Eng.) DOI: https://doi.org/10.1007/978-0-387-40065-5
22. Qin S.J., Badgwell T.A. An Overview of Nonlinear Model Predictive Control Applications. In: Allgöwer F., Zheng A. (eds.) Nonlinear Model Predictive Control. Progress in Systems and Control Theory. Vol. 26. Birkhäuser, Basel; 2000. p. 369-392. (In Eng.) doi: https://doi.org/10.1007/978-3-0348-8407-5_21
23. Diehl M., et al. Real-Time Optimization for Large Scale Processes: Nonlinear Model Predictive Control of a High Purity Distillation Column. In: Grötschel M., Krumke S.O., Rambau J. (eds.) Online Optimization of Large Scale Systems. Springer, Berlin, Heidelberg; 2001. p. 363-383. (In Eng.) doi: https://doi.org/10.1007/978-3-662-04331-8_20
24. Dones I., Manenti F., Preisig H.A., Buzzi-Ferraris G. Nonlinear Model Predictive Control: A Self-Adaptive Approach. Industrial & Engineering Chemistry Research. 2010; 49(10):4782-4791. (In Eng.) doi: https://doi.org/10.1021/ie901693w
25. Elaiw A.M., Xia X., Shehata A.M. Application of model predictive control to optimal dynamic dispatch of generation with emission limitations. Electric Power Systems Research. 2012; 84(1):31-44. (In Eng.) doi: https://doi.org/10.1016/j.epsr.2011.09.024
Published
2021-12-20
How to Cite
SOTNIKOVA, Margarita Victorovna. Application of Predictive Control to Optimize Dynamic Processes in a Given Range. Modern Information Technologies and IT-Education, [S.l.], v. 17, n. 4, p. 824-830, dec. 2021. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/814>. Date accessed: 12 sep. 2025. doi: https://doi.org/10.25559/SITITO.17.202104.824-830.
Section
Cognitive information technologies in control systems