Research of Trajectory Control Algorithms for a Robotic Manipulator

Abstract

Industrial robots are widely used in manufacturing and their application field is constantly expanding. The movement along a given trajectory is one of the most common modes of robotic manipulators’ operation. The paper presents a comparative analysis of four trajectory control schemes, three are PD (proportional-derivative) controllers, and the last one is based on a sliding mode. Using the three-link robot-manipulator model, a simulation modeling complex was developed using the MATLAB Simulink, which allows conducting computational experiments with the closed-loop control system of the manipulator. With that complex, the performance of the considered control schemes was investigated. The effect of parametric perturbations in the manipulator model and signal disturbances, such as a white noise, high frequency harmonic signal, random single interference were studied. Methodical recommendations were formulated for the controller’s application and tuning. The considered control schemes are applicable to various robots of series kinematics.

Author Biographies

Irina Vladimirovna Vasilenko, Saint Petersburg State University

Student at the Faculty of Applied Mathematics and Control Processes

Anastasiia Olegovna Vediakova, Saint Petersburg State University

Assistant Professor of the Chair of Computer Applications and Systems, Faculty of Applied Mathematics and Control Processes, Cand.Sci. (Phys.-Math.)

References

1. Lee H. Trajectory Control of Robotic Manipulators: A Comparison Study. Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition. Vol. 7A: Dynamics, Vibration, and Control. Virtual, Online. V07AT07A017. ASME; 2020. (In Eng.) doi: https://doi.org/10.1115/IMECE2020-23964
2. Zeng K., et al. Trajectory tracking for a 3-DOF robot manipulator based on PSO and adaptive neuro-fuzzy inference system. 2016 35th Chinese Control Conference (CCC). IEEE Press, 2016. p. 973-977. (In Eng.) doi: https://doi.org/10.1109/ChiCC.2016.7553213
3. Sotnikova M.V., Veremey E.I. Algorithms for Motion Optimization on a Given Trajectory Taking into Account Weather Forecast and Constraints. IFAC-PapersOnLine. 2018; 51(32):389-394. (In Eng.) doi: https://doi.org/10.1016/j.ifacol.2018.11.415
4. Slotine J.J.E., Li W. On the adaptive control of robot manipulators. The international journal of robotics research. 1987; 6(3):49-59. (In Eng.) doi: https://doi.org/10.1177/027836498700600303
5. Kumar J., Gupta D., Goyal V. Nonlinear PID Controller for Three-Link Robotic Manipulator System: A Comprehensive Approach. Proceedings of International Conference on Communication and Artificial Intelligence. Springer, Singapore; 2022. p. 137-152. (In Eng.) doi: https://doi.org/10.1007/978-981-19-0976-4_12
6. Jangid M.K., Kumar S., Singh J. Trajectory tracking optimization and control of a three link robotic manipulator for application in casting. International Journal of Advanced Technology and Engineering Exploration. 2021; 8(83):1255. (In Eng.) doi: https://doi.org/10.19101/IJATEE.2021.874468
7. Hu W.F., et al. Intelligent robust control for three-link robot manipulator via sliding mode technology. 2007 IEEE 22nd International Symposium on Intelligent Control. IEEE Press; 2007. p. 499-504. (In Eng.) doi: https://doi.org/10.1109/ISIC.2007.4450936
8. Ozaki T., et al. Trajectory control of robotic manipulators using neural networks. IEEE Transactions on Industrial Electronics. 1991; 38(3):195-202. (In Eng.) doi: https://doi.org/10.1109/41.87587
9. Mustafa M.M., Hamarash I., Crane C.D. Adaptive-Sliding Mode Trajectory Control of Robot Manipulators with Uncertainties. Zanco Journal of Pure and Applied Sciences. 2020; 32(4):22-29. (In Eng.) doi: https://doi.org/10.21271/ZJPAS.32.4.3
10. Cho H. On Robust Adaptive PD Control of Robot Manipulators. Journal of Applied and Computational Mechanics. 2020; 6:1450-1466. (In Eng.) doi: https://doi.org/10.22055/JACM.2020.35658.2707
11. Fan L., Joo E.M. Linear and nonlinear PD-type control of robotic manipulators for trajectory tracking. 2009 4th IEEE Conference on Industrial Electronics and Applications. IEEE Press; 2009. p. 3442-3447. (In Eng.) doi: https://doi.org/10.1109/ICIEA.2009.5138846
12. Schlanbusch R., et al. PD+ based output feedback attitude control of rigid bodies. IEEE Transactions on Automatic Control. 2012; 57(8):2146-2152. (In Eng.) doi: https://doi.org/10.1109/TAC.2012.2183189
13. Santibañez V., Kelly R. PD control with feedforward compensation for robot manipulators: analysis and experimentation. Robotica. 2001; 19(1):11-19. (In Eng.) doi: https://doi.org/10.1017/S0263574700002848
14. Piltan F., Sulaiman N.B. Review of sliding mode control of robotic manipulator. World Applied Sciences Journal. 2012; 18(12):1855-1869. (In Eng.) doi: https://doi.org/10.5829/idosi.wasj.2012.18.12.208
15. Islam S., Liu X.P. Robust sliding mode control for robot manipulators. IEEE Transactions on industrial electronics. 2010; 58(6):2444-2453. (In Eng.) doi: https://doi.org/10.1109/TIE.2010.2062472
16. Mahayana D., Anwari S. Robust adaptive control for robotic manipulator based on chattering free variable structure system. 2009 International Conference on Electrical Engineering and Informatics. Vol. 1. IEEE Press; 2009. p. 247-252. (In Eng.) doi: https://doi.org/10.1109/ICEEI.2009.5254779
17. Neila M.B.R., Tarak D. Adaptive terminal sliding mode control for rigid robotic manipulators. International Journal of Automation and Computing. 2011; 8(2):215-220. (In Eng.) doi: https://doi.org/10.1007/s11633-011-0576-2
18. Corradini M.L., et al. Discrete time sliding mode control of robotic manipulators: Development and experimental validation. Control Engineering Practice. 2012; 20(8):816-822. (In Eng.) doi: https://doi.org/10.1016/j.conengprac.2012.04.005
19. Sotnikova M.V., Veremey E.I., Korovkin M.V. Transoceanic routes optimization using dynamic properties of ship and weather conditions. 2017 Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov) (CNSA). IEEE Press, St. Petersburg, Russia; 2017. p. 1-4. (In Eng.) doi: https://doi.org/10.1109/CNSA.2017.7974017
20. Khalil H.K. Nonlinear systems third edition. Patience-Hall, Inc.; 2002. 3rd ed. 768 p. (In Eng.)
21. Siciliano B., et al. Robotics: Modelling, Planning and Control. Advanced Textbooks in Control and Signal Processing. Springer Science & Business Media, London; 2009. 632 p. (In Eng.) doi: https://doi.org/10.1007/978-1-84628-642-1
22. Bräunl T. Robot Manipulators. In: Embedded Robotics. Springer, Singapore; 2022. p. 253-269. (In Eng.) doi: https://doi.org/10.1007/978-981-16-0804-9_13
23. Arteaga M.A., Gutiérrez-Giles A., Pliego-Jiménez J. Dynamics of Rigid Robot Manipulators. Local Stability and Ultimate Boundedness in the Control of Robot Manipulators. Springer, Cham; 2022. p. 71-102. (In Eng.) doi: https://doi.org/10.1007/978-3-030-85980-0_3
24. Arteaga M.A., Gutiérrez-Giles A., Pliego-Jiménez J. A General Overview of Robot Manipulators. Local Stability and Ultimate Boundedness in the Control of Robot Manipulators. Lecture Notes in Electrical Engineering. Vol. 798. Springer, Cham; 2022. (In Eng.) doi: https://doi-org.libproxy.viko.lt/10.1007/978-3-030-85980-0_1
25. Jain A., Rodriguez G. Computational robot dynamics using spatial operators. Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). Vol. 1. IEEE Press; 2000. p. 843-849. (In Eng.) doi: https://doi.org/10.1109/ROBOT.2000.844155
Published
2022-03-31
How to Cite
VASILENKO, Irina Vladimirovna; VEDIAKOVA, Anastasiia Olegovna. Research of Trajectory Control Algorithms for a Robotic Manipulator. Modern Information Technologies and IT-Education, [S.l.], v. 18, n. 1, p. 62-71, mar. 2022. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/843>. Date accessed: 09 oct. 2025. doi: https://doi.org/10.25559/SITITO.18.202201.62-71.
Section
Cognitive information technologies in control systems