Управление морским аппаратом в режиме перемещения по линейной координате

Аннотация

Выполнение различных маневров в вертикальной и горизонтальной плоскостях – одна из важнейших задач, возникающих при управлении любым объектом. В статье рассматривается задача реализации движения в режиме перемещения по линейной координате (глубине) для беспилотного подводного аппарата. Представлен алгоритм построения закона управления, удовлетворяющего заданным условиям, например, заданному положению равновесия в вертикальной плоскости, астатизму. Построен закон управления с корректирующим устройством. Этот алгоритм был реализован в MATLAB с помощью подсистемы Simulink. MATLAB–одна из самых мощных систем для компьютерного моделирования и анализа динамических систем, таким образом разработанный алгоритм и его реализация с небольшими изменениями могут быть достаточно легко адаптированы для любого объекта.

Сведения об авторах

Maria Alexandrovna Smirnova, Санкт-Петербургский государственный университет

старший преподаватель кафедры компьютерных технологий и систем, факультет прикладной математики – процессов управления, кандидат физико-математических наук

Mikhail Nikolaevich Smirnov, Санкт-Петербургский государственный университет

доцент кафедры компьютерных технологий и систем, факультет прикладной математики – процессов управления, кандидат физико-математических наук

Литература

1. von Ellenrieder K.D. Linear State Space Control Methods. Control of Marine Vehicles. Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping. Vol. 9. Springer, Cham; 2021. p. 211-262. (In Eng.) doi: https://doi.org/10.1007/978-3-030-75021-3_6
2. Veremey E.I. Synthesis of multi-objective control laws for ship motion. Gyroscopy and Navigation. 2010; 1(2):119-125. (In Eng.) doi: https://doi.org/10.1134/S2075108710020069
3. Veremey E.I. Dynamical Correction of Positioning Control Laws. Proceedings of the 9th IFAC Conference on Control Applications in Marine Systems (CAMS 2013). Osaka, Japan; 2013. p. 31-36. (In Eng.)
4. Smirnov N.V., Smirnova T.Ye., Smirnova M.A., Smirnov M.N. Multiprogram Digital Control. Lecture Notes in Engineering and Computer Science: Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS 2014). Vol. I. IAENG, Hong Kong; 2014. p. 268-271. Available at: http://www.iaeng.org/publication/IMECS2014/IMECS2014_pp268-271.pdf (accessed 16.03.2022). (In Eng.)
5. Smirnova T.Ye., Smirnova M.A., Smirnov M.N. Astaticism in the Motion Control Systems of Marine Vessels. Lecture Notes in Engineering and Computer Science: Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS 2014). Vol. I. IAENG, Hong Kong; 2014. p. 258-261. Available at: http://www.iaeng.org/publication/IMECS2014/IMECS2014_pp258-261.pdf (accessed 16.03.2022). (In Eng.)
6. Smirnov N.V., Smirnova M.A., Smirnov M.N. The method of accounting of bounded external disturbances for the synthesis of feedbacks with multi-purpose structure. Lecture Notes in Engineering and Computer Science: Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS 2014). Vol. I. IAENG, Hong Kong; 2014. p. 301-304. Available at: http://www.iaeng.org/publication/IMECS2014/IMECS2014_pp301-304.pdf (accessed 16.03.2022). (In Eng.)
7. Smirnova M.A., Smirnov M.N. Synthesis of Astatic Control Laws of Marine Vessel Motion. 2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR). IEEE Computer Society, Miedzyzdroje, Poland; 2013. p. 678-681. (In Eng.) doi: https://doi.org/10.1109/MMAR.2013.6669992
8. Smirnov M.N., Smirnova M.A. Dynamical Compensation of Bounded External Impacts for Yaw Stabilisation System. 2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT). IEEE Computer Society, Sarajevo, Bosnia and Herzegovina; 2013. p. 1-3. (In Eng.) doi: https://doi.org/10.1109/ICAT.2013.6684040
9. Smirnova M.A., Smirnov M.N. Modal Synthesis of Astatic Controllers for Yaw Stabilization System. 2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT). IEEE Computer Society, Sarajevo, Bosnia and Herzegovina; 2013. p. 1-5. (In Eng.) doi: https://doi.org/10.1109/ICAT.2013.6684041
10. Fedorova M.A. Computer Modeling of the Astatic Stabilization System of Sea-going Ship Course. Proceedings of the 13th International Conference on Humans and Computers (HC '10). ACM, University of Aizu Press, Fukushima-ken, JPN; 2010. p. 117-120. Available at: https://dl.acm.org/doi/pdf/10.5555/1994486.1994515 (accessed 16.03.2022). (In Eng.)
11. Smirnov M.N. Suppression of Bounded Exogenous Disturbances Act on a Sea-going Ship. Proceedings of the 13th International Conference on Humans and Computers (HC '10). ACM, University of Aizu Press, Fukushima-ken, JPN; 2010. p. 114-116. Available at: https://dl.acm.org/doi/pdf/10.5555/1994486.1994514 (accessed 16.03.2022). (In Eng.)
12. Veremey E.I., Smirnova M.A., Smirnov M.N. Synthesis of Stabilizing Control Laws with Uncertain Disturbances for Marine Vessels. 2015 International Conference "Stability and Control Processes" in Memory of V.I. Zubov (SCP). IEEE Computer Society, St. Petersburg, Russia; 2015. p. 1-3. (In Eng.) doi: https://doi.org/10.1109/SCP.2015.7342219
13. Smirnov N.V., Smirnova M.A., Smirnova T.E., Smirnov M.N. Modernization of the approach for bounded external disturbances compensation. 2015 International Automatic Control Conference (CACS). IEEE Computer Society, Yilan, Taiwan; 2015. p. 418-421. (In Eng.) doi: https://doi.org/10.1109/CACS.2015.7465994
14. Smirnova M.A., Smirnov M.N. Multipurpose Control Laws in Trajectory Tracking Problem. International Journal of Applied Engineering Research. 2016; 11(22):11104-11109. Available at: https://www.ripublication.com/ijaer16/ijaerv11n22_53.pdf (accessed 16.03.2022). (In Eng.)
15. Smirnova M.A., Smirnov N.V., Smirnova T.E., Smirnov M.N. Astaticism in tracking control systems. Lecture Notes in Engineering and Computer Science: Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS 2016). Vol. I. IAENG, Hong Kong; 2016. p. 200-204. Available at: http://www.iaeng.org/publication/IMECS2016/IMECS2016_pp200-204.pdf (accessed 16.03.2022). (In Eng.)
16. Smirnov M.N., Smirnova M.A., Smirnova T.E., Smirnov N.V. Multi-purpose Control Laws in Motion Control Systems. Information. 2017; 20(4):2265-2272. (In Eng.)
17. Smirnova M.A., Smirnov M.N., Smirnova T.E., Smirnov N.V. The Issues of Multipurpose Control Laws Construction. Lecture Notes in Engineering and Computer Science: Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS 2017). Vol. I. IAENG, Hong Kong; 2017. p. 194-196. Available at: http://www.iaeng.org/publication/IMECS2017/IMECS2017_pp194-196.pdf (accessed 16.03.2022). (In Eng.)
18. Smirnov M.N., Smirnova M.A., Smirnova T.E., Smirnov N.V. The Problem of Synthesis the Control Laws with Uncertainties in External Disturbances. Lecture Notes in Engineering and Computer Science: Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS 2017). Vol. I. IAENG, Hong Kong; 2017. p. 276-279. Available at: http://www.iaeng.org/publication/IMECS2017/IMECS2017_pp276-279.pdf (accessed 16.03.2022). (In Eng.)
19. Smirnova M.A., Smirnov M.N. Dynamic Modeling and Hybrid Control Design with Image Tracking for a Quadrotor UAV. International Journal of Applied Engineering Research. 2017; 12(15):5073-5077. Available at: https://www.ripublication.com/ijaer17/ijaerv12n15_%20(49).pdf (accessed 16.03.2022). (In Eng.)
20. Smirnov N.V., Smirnov A.N., Smirnov M.N., Smirnova M.A. Combined control synthesis algorithm. 2017 Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov) (CNSA). IEEE Computer Society, St. Petersburg, Russia; 2017. p. 194-196. (In Eng.) doi: https://doi.org/10.1109/CNSA.2017.7974014
21. Smirnov M.N., Smirnova M.A. Questions of Stabilization and Control of Unmanned Aerial Vehicles. Proceedings of the Bulgarian Academy of Sciences. 2018; 71(1):87-91. (In Eng.) doi: https://doi.org/10.7546/CRABS.2018.01.12
22. Smirnov M.N., Smirnova M.A. Control Synthesis for Marine Vessels in Case of Limited Disturbances. TELKOMNIKA Telecommunication, Computing, Electronics and Control. 2018; 16(2):648-653. (In Eng.) doi: http://doi.org/10.12928/telkomnika.v16i2.7180
23. Sotnikova M. Ship Dynamics Control using Predictive Models. IFAC Proceedings Volumes. 2012; 45(27):250-255. (In Eng.) doi: https://doi.org/10.3182/20120919-3-IT-2046.00043
24. Raković S.V., Levine W.S. (eds.) Handbook of Model Predictive Control. Control Engineering. Birkhäuser, Cham; 2019. 692 p. (In Eng.) doi: https://doi.org/10.1007/978-3-319-77489-3
25. Camacho E.F., Bordons C. Model Predictive Control. Advanced Textbooks in Control and Signal Processing. 2nd ed. London: Springer-Verlag; 2007. 405 p. (In Eng.) doi: https://doi.org/10.1007/978-0-85729-398-5
Опубликована
2022-07-20
Как цитировать
SMIRNOVA, Maria Alexandrovna; SMIRNOV, Mikhail Nikolaevich. Управление морским аппаратом в режиме перемещения по линейной координате. Современные информационные технологии и ИТ-образование, [S.l.], v. 18, n. 2, p. 270-278, july 2022. ISSN 2411-1473. Доступно на: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/863>. Дата доступа: 25 apr. 2024 doi: https://doi.org/10.25559/SITITO.18.202202.270-278.
Раздел
Когнитивные информационные технологии в системах управления