Computational Models of Digital Personalized Medicine

Abstract

The development of personalized medicine is determined by the synergy of scientists from several fields of medicine, mathematics and computer science. Approaches based on modern methods of measurement, signal processing and machine learning complement the main methods of studying biological processes, allow us to identify the mechanisms of the disease and personalize the treatment strategy. The article is devoted to the development of a new method for monitoring the system of autoregulation of cerebral circulation in patients in real time. The process of cerebral autoregulation is determined by the signals of blood flow velocity in the arteries of the base of the brain and systemic arterial pressure in the range of Mayer waves, recorded by non-invasive methods of photoplethysmography and transcranial dopplerography. The existing methods are based on the cross-correlation function, the phase shift function between the signals of blood flow velocity and pressure, or on the assessment of the transfer function of the autoregulation system. The article proposes to use fractal methods that use the calculation of the Hölder multifractal spectra of signals and the determination of the correlation dimension of the system. The advantage of fractal methods is that they can be applied to scale-invariant signals. The combination of multifractal and traditional spectral-correlation methods in the information-measuring system will improve the quality of monitoring of cerebral autoregulation directly at the patient's bedside, take into account the characteristics of the patient and, thereby, develop the principle of personalized medicine.

Author Biographies

Vladimir Borisovich Semenyutin, V. A. Almazov National Medical Research Centre

Head of the Laboratory of Brain Circulation Pathology of the Russian Polenov Neurosurgical Institute, Dr. Sci. (Biol.), Professor

Valeriy Ivanovich Antonov, Peter the Great St. Petersburg Polytechnic University

Professor of the Department of Higher Mathematics, Institute of Physics and Mechanics, Dr. Sci. (Eng.), Associate Professor

Galina Fedorovna Malykhina, Peter the Great St. Petersburg Polytechnic University

Professor of the Higher School of Cyber-Physical Systems and Management, Institute of Computer Science and Technologies, Dr. Sci. (Tech.), Associate Professor

References

1. Antonov V.I., Malykhina G.F., Semenyutin V.B. Fractal analysis in the study of the regulation of cerebral circulation. St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2022;15(4):156-169. (In Russ., abstract in Eng.) doi: https://doi.org/10.18721/JPM.15412
2. Semenyutin V.B., Panuntsev G.K., Aliev V.A., Patzak A. cerebral autoregulation in perinidal area of brain arteriovenous malformation. Translational Medicine. 2016;3(1):89-97. (In Russ., abstract in Eng.) doi: https://doi.org/10.18705/2311-4495-2016-3-1-89-97
3. Semenyutin V.B., Nikiforova A.A., Aliev V.A., Panuntsev G.K. Informativity of blood flow distribution in the precerebral arteries for determining the hemodynamic significance of carotid stenosis. Regional blood circulation and microcirculation. 2021;20(2):45-51. (In Russ., abstract in Eng.) doi: https://doi.org/10.24884/1682-6655-2021-20-2-45-51
4. von Reutern G.-M., Goertler M.-W., Bornstein N.M., Del Sette M., Evans D.H., Hetzel A., Kaps M., Perren F., Razumovky A., Shiogai T., Titianova E., Traubner P., Venketasubramanian N., Wong L.K.S., Yasaka M. Grading Carotid Stenosis Using Ultrasonic Methods. Stroke. 2012;43(3):916-921. doi: https://doi.org/10.1161/STROKEAHA.111.636084
5. Elwertowski M., Leszczyński J., Kaszczewski P., Lamparski K., Ho S.S.Y., Gałązka Z. The importance of blood flow volume in the brain-supplying arteries for the clinical management ‒ the impact of collateral circulation. Journal of Ultrasonography. 2018;18(73):112-119. doi: https://doi.org/10.15557/JoU.2018.0016
6. Voznyuk I.A., Polushin A.Yu., Stepanov E.A. Quantitative estimation of the parameters of ultrasonic cerebral blood flow (value and norm). Regional blood circulation and microcirculation. 2013;12(4):30-40. Available at: https://www.elibrary.ru/item.asp?id=21166803 (accessed 19.10.2022). (In Russ., abstract in Eng.)
7. Mozzini C., Roscia G., Casadei A., Cominacini L. Searching the perfect ultrasonic classification in assessing carotid artery stenosis: comparison and remarks upon the existing ultrasound criteria. Journal of Ultrasound. 2016;19(2):83-90. doi: https://doi.org/10.1007/s40477-016-0193-6
8. Goldberger A.L., Amaral L.A.N., Glass L., Hausdorff J.M., Ivanov P.Ch., Mark R.G., Mietus J.E., Moody G.B., C.-K. Peng, Stanley H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation. 2000;101(23):E215-20. doi: https://doi.org/10.1161/01.CIR.101.23.e215
9. Malykhina G., Salnikov V., Semenyutin V., Tarkhov D. Digitalization of medical services for detecting violations of cerebrovascular regulation based on a neural network signal analysis algorithm. In: Proceedings of the 2nd International Scientific Conference on Innovations in Digital Economy (SPBPU IDE '20). New York, NY, USA: Association for Computing Machinery; 2021. Article number: 61. p. 1-7. doi: https://doi.org/10.1145/3444465.3444526
10. Lazovskaya T., Malykhina G., Tarkhov D. Physics-Based Neural Network Methods for Solving Parameterized Singular Perturbation Problem. Computation. 2021;9(9):97. doi: https://doi.org/10.3390/computation9090097
11. Lawal Z.K., Yassin H., Lai D.T.C., Che Idris A. Physics-Informed Neural Network (PINN) Evolution and Beyond: A Systematic Literature Review and Bibliometric Analysis. Big Data and Cognitive Computing. 2022;6(4):140. doi: https://doi.org/10.3390/bdcc6040140
12. Lazovskaya T., Malykhina G., Tarkhov D. Construction of an Individual Model of the Deflection of a PVC-Specimen Based on a Differential Equation and Measurement Data. In: 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). Vladivostok, Russia: IEEE Computer Society; 2020. p. 1-4. doi: https://doi.org/10.1109/FarEastCon50210.2020.9271144
13. Ahmad M.S., Adnan S.M., Zaidi S., Bhargava P. A novel support vector regression (SVR) model for the prediction of splice strength of the unconfined beam specimens. Construction and Building Materials. 2020;248:118475. doi: https://doi.org/10.1016/j.conbuildmat.2020.118475
14. Antonov V.I., Zagaynov A.I., van Quang V. The dynamic fractal analysis of heart rate variability. St. Petersburg Polytechnical University Journal. Computer Science. Telecommunication and Control Systems = Computing, Telecommunication and Control. 2012;(1):88-94. Available at: https://www.elibrary.ru/item.asp?id=17881606 (accessed 19.10.2022). (In Russ., abstract in Eng.)
15. Malykhina G.F., Semenyutin V.B., Mukhidinova N.Sh. Fourier and wavelet analysis in the medical system for monitoring the autoregulation of cerebral circulation. In: Proceedings of the International Conference on System Analysis in Engineering and Control. Part 2. Saint Petersburg: POLYTECH-Press; 2021. p. 33-43. (In Russ., abstract in Eng.) doi: https://doi.org/10.18720/SPBPU/2/id21
16. Sejdić E., Djurović I., Jiang J. Time-frequency feature representation using energy concentration: An overview of recent advances. Digital Signal Processing. 2009;19(1):153-183. doi: https://doi.org/10.1016/j.dsp.2007.12.004
17. Abry P., Sellan F. The Wavelet-Based Synthesis for Fractional Brownian Motion Proposed by F. Sellan and Y. Meyer: Remarks and Fast Implementation. Applied and Computational Harmonic Analysis. 1996;3(4):377-383. doi: https://doi.org/10.1006/acha.1996.0030
18. Jaffard S., Lashermes B., Abry P. Wavelet Leaders in Multifractal Analysis. In: Qian T., Vai M.I., Xu Y. (Eds.) Wavelet Analysis and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser Basel; 2006. p. 201-246. doi: https://doi.org/10.1007/978-3-7643-7778-6_17
19. Gadhoumi K., Do D., Badilini F., Pelter M.M., Hu X. Wavelet leader multifractal analysis of heart rate variability in atrial fibrillation. Journal of Electrocardiology. 2018;51(6):S83-S87. doi: https://doi.org/10.1016/j.jelectrocard.2018.08.030
20. Azizi T. On the fractal geometry of different heart rhythms. Chaos, Solitons & Fractals: X. 2022;9:100085. doi: https://doi.org/10.1016/j.csfx.2022.100085
21. Kokosińska D., Gierałtowski J.J., Żebrowski J.J., Orłowska-Baranowska E., Baranowski R. Heart rate variability, multifractal multiscale patterns and their assessment criteria. Physiological Measurement. 2018;39(11):114010. doi: https://doi.org/10.1088/1361-6579/aae86d
22. Muzy J.F., Bacry E., Arneodo A. Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. Physical Review E. 1993;47(2):875-884. doi: https://doi.org/10.1103/PhysRevE.47.875
23. Catrambone V., Barbieri R., Wendt H., Abry P., Valenza G. Functional brain–heart interplay extends to the multifractal domain. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2021;379(2212):20200260. doi: https://doi.org/10.1098/rsta.2020.0260
24. Dick O.E., Svyatogor I.A. Potentialities of the wavelet and multifractal techniques to evaluate changes in the functional state of the human brain. Neurocomputing. 2012;82:207-215. doi: https://doi.org/10.1016/j.neucom.2011.11.013
25. Collin C.B., Gebhardt T., Golebiewski M., Karaderi T., Hillemanns M., Khan F.M., Salehzadeh-Yazdi A., Kirschner M., Krobitsch S., Kuepfer L. Computational Models for Clinical Applications in Personalized Medicine ‒ Guidelines and Recommendations for Data Integration and Model Validation. Journal of Personalized Medicine. 2022;12(2):166. doi: https://doi.org/10.3390/jpm12020166
Published
2022-12-20
How to Cite
SEMENYUTIN, Vladimir Borisovich; ANTONOV, Valeriy Ivanovich; MALYKHINA, Galina Fedorovna. Computational Models of Digital Personalized Medicine. Modern Information Technologies and IT-Education, [S.l.], v. 18, n. 4, p. 889-899, dec. 2022. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/874>. Date accessed: 20 aug. 2025. doi: https://doi.org/10.25559/SITITO.18.202204.889-899.
Section
Cognitive information technologies in the digital economics

Most read articles by the same author(s)