Software for Studying Robust Properties and Synthesis of Regulators of Automatic Control Systems with Interval Parameters

Abstract

In the article, the RASLIS software package is developed, which is based on the algorithms of robust analysis and synthesis of interval control systems obtained by the authors with affine uncertainty of the coefficients of the characteristic polynomial. The RASLIS software package allows you to form a boundary vertex-edge route based on the polyhedron of polynomial coefficients and, as a result of its mapping to the root plane, determine the root indicators of the robust quality of the system. It also allows parametric synthesis of linear robust controllers based on the criterion of the maximum degree of robust stability.
The RASLIS software package has the ability to analyze and synthesize these systems in automatic or interactive modes. The work of the RASLIS software package was tested on the example of the analysis of the root indicators of robust quality and the synthesis of a robust controller of the control system of the propulsion and steering complex of the underwater vehicle.

Author Biographies

Tatiana Alexandrovna Ezangina, National Research Tomsk Polytechnic University

Associate Professor of the Division for Information Technology, School of Computer Science and Robotics, Cand. Sci. (Eng.)

Sergey Anatolevich Gayvoronskiy, National Research Tomsk Polytechnic University

Associate Professor of the Division for Information Technology, School of Computer Science and Robotics, Cand. Sci. (Eng.), Associate Professor

References

1. Grigut E., Kiriyakov I., Senichenkov Yu. Designing application-dependent tools for modeling and simulation on basis of universal modeling environment. In: Proceedings of the 3rd International Conference on Applications in Information Technology (ICAIT'2018). New York, NY, USA: Association for Computing Machinery; 2018. p. 17-22. doi: https://doi.org/10.1145/3274856.3274861
2. Isakov A.A., Kolesov Yu.B., Senichenkov Yu.B. A new tool for visual modeling ‒ Rand Model Designer 7. IFAC-PapersOnLine. 2015;48(1):661-662. doi: https://doi.org/10.1016/j.ifacol.2015.05.102
3. Shornikov Yu.V., Senichenkov Yu.B., Ryzhov V.A. Comparative Analysis of Computer Modeling and Simulation Environments under the InMotion Project. Humanities and Science University Journal. 2017;(30):58-65. Available at: https://www.elibrary.ru/item.asp?id=35105050 (accessed 21.07.2022).
4. Burak T.I., Lukashevich M.M. Methodology and software for semantic analysis of complex dynamical systems. In: International scientific and technical conference proceedings "Open Semantic Technologies for Intelligent Systems" (OSTIS). 2016;(6):569-572. Available at: https://www.elibrary.ru/item.asp?id=30080368 (accessed 21.07.2022). (In Russ., abstract in Eng.)
5. Burak T.I., Kernoga A.L. Computer modeling of dynamic systems. In: Proceedings of the International Conference on Innovative technologies: theory, tools, practice. Vol. 2. Perm: PNRPU; 2014. p. 196-201. Available at: https://www.elibrary.ru/item.asp?id=23693623 (accessed 21.07.2022). (In Russ., abstract in Eng.)
6. Kozlov O.S., Kondakov D.E., Skvortsov L.M., Timofeev K.A., Hodakovskii V.V. Software for Research Dynamics and Design of Technical Systems. Information Technologies. 2005;(9):20-25. Available at: https://www.elibrary.ru/item.asp?id=20468025 (accessed 21.07.2022). (In Russ., abstract in Eng.)
7. Kuntsevich A.V., Kuntsevich V.M. "Robust stability" tool system for the analysis of the robust stability of dynamic systems. Soviet Journal of Automation and Information Sciences. 1990;23(6):1-6. Available at: https://www.elibrary.ru/item.asp?id=31157147 (accessed 21.07.2022).
8. Tsavnin A., Efimov S., Zamyatin S. Overshoot Elimination for Control Systems with Parametric Uncertainty via a PID Controller. Symmetry. 2020;12(7):1092. doi: https://doi.org/10.3390/sym12071092
9. Sukhodoev M.S., Gayvoronskiy S.A., Zamyatin S.V. Analysis and synthesis of automatic control robust systems in the MATLAB environment. Bulletin of the Tomsk Polytechnic University. 2008;312(5):61-66. Available at: https://www.elibrary.ru/item.asp?id=11170119 (accessed 21.07.2022). (In Russ., abstract in Eng.)
10. Tsavnin A.V., Zarnitsyn A.Yu., Efimov S.V., Podkovyrov I.A., Zamyatin S.V. Design approach for robust non-overshooting controller for ACS with parametric uncertainty. Industrial Automatic Control Systems and Controllers. 2021;(4):3-11. (In Russ., abstract in Eng.) doi: https://doi.org/10.25791/asu.4.2021.1270
11. Gayvoronskiy S., Ezangina T., Khozhaev I., Kazmin V. Determination of Vertices and Edges in a Parametric Polytope to Analyze Root Indices of Robust Control Quality. International Journal of Automation and Computing. 2019;16(6):828-837. doi: https://doi.org/10.1007/s11633-019-1182-y
12. Khozhaev I.V., Gayvoronskiy S.A., Ezangina T.A. Parametric synthesis of a robust controller on a base of mathematical programming method. Journal of Physics: Conference Series. 2018;1016(1):012010. doi: https://doi.org/10.1088/1742-6596/1016/1/012010
13. Banjerdpongchai D., How J.P. LMI synthesis of parametric robust /spl Hscr//sub /spl infin// controllers. In: Proceedings of the 1997 American Control Conference (Cat. No.97CH36041). Albuquerque, NM, USA: IEEE Computer Society; 1997. Vol. 1. p. 493-498. doi: https://doi.org/10.1109/ACC.1997.611848
14. Tsavnin A.V., Efimov S.V., Zamyatin S.V. PID-controller tuning approach guaranteeing non-overshooting step response. Proceedings of TUSUR University. 2019;22(2):77-83. (In Russ., abstract in Eng.) doi: https://doi.org/10.21293/1818-0442-2019-22-2-77-82
15. Vadutov O.S. Design of PID controller for delayed systems using optimization technique under pole assignment constraints. Bulletin of the Tomsk Polytechnic University. 2014;325(5):16-22. Available at: https://www.elibrary.ru/item.asp?id=22860550 (accessed 21.07.2022). (In Russ., abstract in Eng.)
16. Smirnov N.I., Sharovin I.M. On optimality criterion selection in numerical computation of Automated Control Systems. Industrial Automatic Control Systems and Controllers. 2009;(5):16-21. Available at: https://www.elibrary.ru/item.asp?id=12364788 (accessed 21.07.2022). (In Russ., abstract in Eng.)
17. Lubentsova E.V., Piotrovskiy D.L., Lubentsov V.F. Robust fuzzy automatic control system with variable structure. Fundamental research. 2017;(3):53-59. Available at: https://www.elibrary.ru/item.asp?id=29007770 (accessed 21.07.2022). (In Russ., abstract in Eng.)
18. Keel L.H., Bhattacharyya S.P. Robustness and fragility of high order controllers: A tutorial. In: Proceedings of IEEE Conference on Control Applications. Buenos Aires, Argentina: IEEE Computer Society; 2016. p. 191-202. doi: https://doi.org/10.1109/CCA.2016.7587837
19. Bhattacharyya S.P. Robust control under parametric uncertainty: An overview and recent results. Annual Reviews in Control. 2017;44:45-77. doi: https://doi.org/10.1016/j.arcontrol.2017.05.001
20. Mihailescu-Stoica D., Schrodel F., Vobetawinkel R., Adamy J. On robustly stabilizing PID controllers for systems with a certain class of multilinear parameter dependency. In: Proceedings of the 26th Mediterranean Conference on Control and Automation. Zadar, Croatia: IEEE Computer Society; 2018. p. 1-6. doi: https://doi.org/10.1109/MED.2018.8442811
21. Khalil A., Wang J.H., Mohamed O. Robust stabilization of load frequency control system under networked environment. International Journal of Automation and Computing. 2017;14(1):93-105. doi: https://doi.org/10.1007/s1l633-016-1041-z
22. Gayvoronskiy S.A., Ezangina T., Pushkarev M. Parametric Synthesis of a Robust Controller for Maximising the Response of an Interval Control System. International Review of Automatic Control. 2022;15(2):58-69. doi: https://doi.org/10.15866/ireaco.v15i2.20560
23. Nguyen N.H., Nguyen P.D. Overshoot and settling time assignment with PID for first-order and second-order systems. IET Control Theory & Applications. 2018;12(17):2407-2416. doi: https://doi.org/10.1049/iet-cta.2018.5076
24. Gayvoronskiy S.A., Khozhaev I.V., Ezangina T.A. Motion Control System for a Remotely Operated Vehicle with Interval Parameters. International Journal of Mechanical Engineering and Robotics Research. 2017;6(5):378-384. doi: https://doi.org/10.18178/ijmerr.6.5.378-384
25. Zhang X.Q., Li X.Y., Zhao J. Stability analysis and anti-windup design of switched systems with actuator saturation. International Journal of Automation and Computing. 2017;14(5):615-625. doi: https://doi.org/10.1007/s1l633-015-0920-z
Published
2022-12-20
How to Cite
EZANGINA, Tatiana Alexandrovna; GAYVORONSKIY, Sergey Anatolevich. Software for Studying Robust Properties and Synthesis of Regulators of Automatic Control Systems with Interval Parameters. Modern Information Technologies and IT-Education, [S.l.], v. 18, n. 4, p. 734-743, dec. 2022. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/889>. Date accessed: 20 aug. 2025. doi: https://doi.org/10.25559/SITITO.18.202204.734-743.
Section
Theoretical Questions of Computer Science, Computer Mathematics