USING THE VARIABLE-LENGTH MANTISSA FOR MODELS’ PARAMETERS ESTIMATION

  • Илья Сергеевич Васильев ZAO ELSI
  • Татьяна Валентиновна Жгун Novgorod State University

Abstract

The article is dedicated to the problem of computing process design for computing processes used for systems parameters estimation based on measurements using maximum likelihood method, using variable length mantissa calculations. A new method for the optimal mantissa length for each iteration of perculiar system parameters estimation task determination is presented, based on a series of iteration processes for modelled systems parameters estimation research.

Author Biographies

Илья Сергеевич Васильев, ZAO ELSI

dipl. eng., PhD student

Татьяна Валентиновна Жгун, Novgorod State University

Candidate of Physical and Mathematical Sciences, Associate Professor

References

1. Bard J. Nonlinear Parameter Estimation. New York: Academic Press, 1974, 341p.
2. Englezos P., Kalogerakis N. Applied Parameter Estimation for Chemical Engineers. Boka-Raton: CRC Press, 2000, 460 p.
3. Petrov M. N., Gudkov G. V. Modelirovanie komponentov i elementov SBIS: Uchebnoe posobie [IC components and elements modelling: coursebook]. Novgorod State university, 2006, 584p..
4. McLachlan G. J., Peel D. Finite Mixture Models. New York: Wiley, 2000, 419p.
5. Higham N. J. Accuracy and stability of numerical algorithms. Philadelphia: Society for Industrial and Applied Mathematics, 1996, 675 p.
6. Jonathan Richard Shewchuk Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates // Discrete & Computational Geometry. 1997. №18(3). Pp. 305–363.
7. Grinevich A. I. Metod otsenki pogreshnosti okruglenii znachenii vychislyaemoi funktsii, osnovannyi na var'irovanii dliny mantissy v arifmetike s plavayushchei zapyatoi. Diss. kand. fiziko-matematicheskikh nauk [Method of counted function rounding error estimation, based on mantissa length changing using floating-point arithmetics. PHd in Physics & Mathematics diss.]. Moscow, MFTI, 2013.
8. Vassiliev I. S. Popov S. A. Otsenivanie SPICE-parametrov s zadannoi tochnost'yu [SPICE-parameter estimation with given accuracy]. Vestnik Novgorodskogo Gosudarstvennogo Universiteta 2014. №1.81. С. 20–22.
9. Vassiliev I. S. Popov S. A. Metod ekstraktsii parametrov IS i raschet ikh statisticheskikh kharakteristik [Method of IS parameter extraction and their statistical characteristics estimation]. IV Mezhdunarodnaya zaochnaya nauchno-tekhnicheskaya konferentsiya «Informatsionnye tekhnologii. Radioelektronika. Telekommunikatsii (ITRT-2014) [Proc. of IV International Extramural science-technic conference “Informational technologies. Radioelectronics. Telecommunications. (ITRT-2014)”], Togliatti, 2014.
10. Cramer H. Mathematical Methods of Statistics. Princeton, New Jersey: Princeton University Press, 1946, 575p.
11. Voevodin V. V. Vychislitel'nye osnovy linejnoj algebry [Calculation basis of linear algebra].Moscow, Nauka Publ., 1977. 304p.
12. Godunov S. K. et al. Garantirovannaja tochnost' reshenija sistem linejnyh uravnenij v evklidovyh prostranstvah [Guaranteed accuracy of linear equation systems solving in Euclidean fields]. Novosibirsk, Nauka Publ., 1988, 456p.
Published
2017-05-30
How to Cite
ВАСИЛЬЕВ, Илья Сергеевич; ЖГУН, Татьяна Валентиновна. USING THE VARIABLE-LENGTH MANTISSA FOR MODELS’ PARAMETERS ESTIMATION. Modern Information Technologies and IT-Education, [S.l.], v. 13, n. 1, p. 144-154, may 2017. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/205>. Date accessed: 26 aug. 2025. doi: https://doi.org/10.25559/SITITO.2017.1.425.