QUALITY OF MULTIPARAMETRIC SELECTION BY COMPLEX CRITERION

Abstract

This article discusses the problem of selecting a useful radiation source according to its several weakly expressed parameters. For the implementation of the selection algorithm, as well as the calculation of the probability of finding a useful source, the known methods of selection use the integration of multidimensional probability densities of random variables. Such a calculation requires high computational costs, as well as knowledge of the laws of probability density distribution of random variables used for breeding, which is difficult to implement in practice. In order to simplify multidimensional selection, it is proposed to use a selection method based on a complex criterion. The method of selection according to a complex criterion consists in calculating the functionals of the sources on the basis of their parameters, taking into account the weighted coefficients. Such a functional is essentially an application of the ordinary least squares method to obtain an estimate of the degree of compliance of the objects under consideration with specified conditions. And when using weighted coefficients to calculate the value of a complex criterion, less pronounced parameters of the useful signal make a smaller contribution when making the decision about the detection of a useful signal. This article focuses on analyzing the impact of a set of parameters used for selection according to a complex criterion.

Author Biographies

Dmitry Borisovich Egorov, KBP Instrument Design Bureau

master, graduate student

Valeriy Mariafovich Ponyatsky, KBP Instrument Design Bureau

Head of the Department, Ph.D. (Engineering)

References

[1] Andreev A.L., Korotaev V.V., Pashkovsky D.M. Selection of small objects images against an inhomogeneous background under noise conditions. Journal of Instrument Engineerin. 2013; 10:88-93. Available at: http://pribor.ifmo.ru/file/article/6422.pdf (accessed 13.12.2018). (In Russ.)
[2] Bolotova Yu.A., Spitsyn V.G., Rudometkina M.N. License plate recognition algorithm on the basis of a connected components method and a hierarchical temporal memory model. Сomputer Оptics. 2015; 39(2):275-280. (In Russ.) DOI: 10.18287/0134-2452-2015-39-2-275-280
[3] Borisov V.N. Multi-parameter selection of pulse-code signals of telecommunication systems when exposed to non-Gaussian pulse and noise interference: dis. ... Ph.D. (Engineering). Kazan, 2006. (In Russ.)
[4] Borisova I.V., Legkiy V.N., Kravets S.A. Application of the gradient orientation for systems of automatic target detection. Сomputer Оptics. 2017; 41(6):931-937. (In Russ.) DOI: 10.18287/2412-6179-2017-41-6-931-937
[5] Van Trees H.L. Detection, Estimation, and Modulation Theory. Part I: Detection, Estimation, and Linear Modulation Theory. New York: John Wiley and Sons, 1968. (In Eng.)
[6] Galante A.I., Makaretsky E.A. Ponyatsky V.M. Methods of selection of the image of a mobile radiation source in the background noise. Proceedings of theses of the XI International Scientific Conference on Optoelectronic Equipment and Devices in Systems of Pattern Recognition, Image and Symbol Information Processing (RECOGN 2013). Kursk, 2013. (In Russ.)
[7] Gorbunov Yu. N. Stochastic Whitewash of Passive Correlated Interference for the Optimization of Moving Target Selection Systems. Information and Control Systems. 2015; 2(75):15-22. (In Russ.) DOI: 10.15217/issn1684-8853.2015.2.15
[8] Zherdev D.A., Kazanskiy N.L., Fursov V.A. object recognition in radar images using conjugation indices and support subspaces. Сomputer Оptics. 2015; 39(2):255-264. (In Russ.) DOI: 10.18287/0134-2452-2015-39-2-255-264
[9] Zabolotskiy V.P., Kharinov M.V. Technology of quasi-optimal machine vision. Management of Economic Systems. 2015; 12(84):20. Available at: http://uecs.ru/innovacii-investicii/item/3891-2015-12-30-14-02-03 (accessed 13.12.2018). (In Russ.)
[10] Kostoglotov A.A., Kostoglotov A.I., Lazarenko S.V., Andrashitov D.S. Multi-parameter identification of design parameters using the combined maximum principle. Engineering journal of Don. 2011; 1(15):208-218. Available at: https://elibrary.ru/item.asp?id=16523302 (accessed 13.12.2018). (In Russ.)
[11] Kostoglotov A.A., Kuznetsov A.A., Lazarenko S.V., Deryabkin I.V. Structural Adaptation of Discrete Algorithms of Combined-Maximum Principle in Assessment of Movement Parameters. Information and Control Systems. 2016; 6(85):10-15. (In Russ.) DOI: 10.15217/issn1684-8853.2016.6.10
[12] Kostoglotov A.A., Kuznetsov A.A., Lazarenko S.V., Losev V.A. Synthesis of Filter Support with Structural Adaptation Based on Combined Maximum Principle. Information and Control Systems. 2015; 4(77):2-9. Available at: https://elibrary.ru/item.asp?id=24113100 (accessed 13.12.2018). (In Russ.)
[13] Kostoglotov A.A., Lazarenko S.V., Andrashitov D.S. Regularized variational algorithm of multi-parameter identification of dynamic systems. Services in Russia and abroad. 2011; 8(27):25-36. Available at: https://elibrary.ru/item.asp?id=17228448 (accessed 13.12.2018). (In Russ.)
[14] Kostoglotov A.A., Kostoglotov A.I., Lazarenko S.V., Tsennih B.M. Method of an estimation of parameters of movement of the operated flying machine on the basis of an combined-maximum principle with construction of a basic trajectory. Uspekhi sovremennoi radioelektroniki = Achievements of Modern Radioelectronics. 2012; 6:61-66. Available at: https://elibrary.ru/item.asp?id=17830838 (accessed 13.12.2018). (In Russ.)
[15] Kochkin V.A. Automatic dynamic objects allocation on the underlying surface back-ground. Science and Education of the Bauman MSTU. 2014; 12:889-901. (In Russ.) DOI: 10.7463/1214.0749279
[16] Косhкin V.A. Automatic Detection of Dynamical Objects in the Surveillance and Search Optic-Electronic Systems. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering. 2011; S2:104-113. Available at: https://elibrary.ru/item.asp?id=17837771 (accessed 13.12.2018). (In Russ.)
[17] Galante A.I., Ponyatsky V.M., Makaretsky E.A. Features of the design of image processing algorithms in television measuring systems. Proceedings of the All-Russian Scientific and Technical Conference "Simulation of aircraft systems". M.: GosNIIAS, pp. 121-127, 2011. (In Russ.)
[18] Ponyatsky V.M., Galante A.I., Egorov D.B., Makaretsky E.A. Selection of images of a useful radiation source against the background of interference by a complex criterion. Izvestiya Tula State University. Seriya Radiotekhnika i radiooptika = Izvestiya TulGU. Radio Engineering and Radio Optics series. 2013; XIII:131-136. (In Russ.)
[19] Ponyatsky V.M., Karamov S.V., Makaretsky E.A. Separation of coordinates of a useful stimulus source on a noise background from a photodetector of a matrix type. Proceedings of the International conference Digital signal processing and its applica-tions (DSPA-2006). М: RNTORES, Vol. 2, pp. 450-453, 2006. Available at: http://www.autex.spb.su/download/dsp/dspa/dspa2006/t2/2-32.pdf (accessed 13.12.2018). (In Russ.)
[20] Ponyatsky V.M. Radiation source motion recovery according to the sequence of television images using quasioptimal filtration. Voprosy Atomnoy Nauki i Tekhniki (VANT). Series "Mathematical Modeling of Physical Processes". 2010; 1:68-81. Available at: https://elibrary.ru/item.asp?id=13501472 (accessed 13.12.2018). (In Russ.)
[21] Ponyatsky V.M. Integration (complexation) the estimations of coordinates of mobile object received by different methods of processing of sequence of video images. Izvestiya Tula State University. Tekhnicheskie nauki = Izvestiya TulGU. Technical sciences. 2015; 2:77-89. Available at: https://elibrary.ru/item.asp?id=23574402 (accessed 13.12.2018). (In Russ.)
[22] Potapov A.A. Physical bases and principles of construction of fractal radars and fractal sensors: a new direction-fractal analysis and its application in the theory of statistical solutions and in statistical radio engineering. Radioelectronics. Nanosystems. Information Technologies. 2017; 9:2:129-138. (In Eng.) DOI: 10.17725/rensit.2017.09.129
[23] Profatilova G.A., Soloviev G.N., Yefremov V.S., Soloviev A.G. Spectral Processing of Information in Radar Systems of Air Traffic Control. Herald of the Bauman Moscow State Technical University. Series Instrument Engineering. 2017; 5(116):99-113. (In Russ.) DOI: 10.18698/0236-3933-2017-5-99-113
[24] Protsenko V.I., Kazanskiy N.L., Serafimovich P.G. Real-time analysis of parameters of multiple object detection systems. Сomputer Оptics. 2015; 39(4):582-591. (In Russ.) DOI: 10.18287/0134-2452-2015-39-4-582-591
[25] Rubis A.Yu., Lebedev M.A., Yu.V. VizilterVygolov O.V. Morphological image filtering based on guided contrasting. Сomputer Оptics. 2016; 40(1):73-79. (In Russ.) DOI: 10.18287/2412-6179-2016-40-1-73-79
[26] Solonar A.S., Khmarski P.A., Mihalkovki A.A., Tsuprik S.V., Ivanuk V.S. Optical-location coordinator of the homing system of an unmanned aerial vehicle. Doklady BGUIR. 2018; 3(113):19-25. Available at: https://elibrary.ru/item.asp?id=35061424 (accessed 13.12.2018). (In Russ.)
[27] Tupikov V.A., Pavlova V.A., Alexandrov V.A., Bondarenko V.A. Automatic object detection method for marine scenes in visible range. Izvestiya Tula State University. Tekhnicheskie nauki = Izvestiya TulGU. Technical sciences. 2016; 11-3:105-121. Available at: https://elibrary.ru/item.asp?id=27510561 (accessed 13.12.2018). (In Russ.)
[28] Filippov A.A., Bazhin D.A., Khlobystov A.N. Improving Drone Aircraft Control Efficiency under Interference. Information and Control Systems. 2014; 6(73):45-50. Available at: https://elibrary.ru/item.asp?id=22829312 (accessed 13.12.2018). (In Russ.)
[29] Chervyakov N.I., Lyakhov P.A., Orazaev A.R. New methods of adaptive median filtering of impulse noise in images. Сomputer Оptics. 2018; 42(4):667-678. (In Russ.) DOI: 10.18287/2412-6179-2018-42-4-667-678
[30] Sherstobitov A.I. Method and algorithms for extracting a useful signal against noise with restrictions on the sample size and under conditions of a priori uncertainty. dis. ... Ph.D. (Engineering). Shahty, 2008. (In Russ.)
Published
2019-04-19
How to Cite
EGOROV, Dmitry Borisovich; PONYATSKY, Valeriy Mariafovich. QUALITY OF MULTIPARAMETRIC SELECTION BY COMPLEX CRITERION. Modern Information Technologies and IT-Education, [S.l.], v. 15, n. 1, p. 115-123, apr. 2019. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/486>. Date accessed: 27 oct. 2025. doi: https://doi.org/10.25559/SITITO.15.201901.115-123.
Section
Cognitive information technologies in control systems