Математическая модель анализа надежности неоднородной дублированной системы передачи данных
Аннотация
В данной работе мы рассматриваем математическую модель восстанавливаемой резервированной системы передачи данных как модель замкнутой неоднородной системы холодного дублирования с одним ремонтным устройством, с произвольным числом источников данных с экспоненциальной функцией распределения времени безотказной работы и произвольной функцией распределения времени ремонта её элементов. Мы изучаем надежность системы, определяемую как стационарную вероятность безотказной работы системы. Предлагаемая аналитическая методология позволила оценить надежность всей системы при отказе её отдельных элементов. Получены явные аналитические и асимптотические выражения для стационарных вероятностей состояний системы и стационарной вероятности безотказной работы системы, которые позволяют анализировать другие операционные характеристики системы относительно производительности резервных элементов. Были выбраны следующие распределения времени ремонта элементов: Экспоненциальное (M), Вейбулла-Гнеденко (GW), Парето (PAR), Гамма (G) и Логнормальное (LN) для анализа и сравнения результатов. Также изучалась проблема анализа чувствительности характеристик надежности рассматриваемой системы к видам распределений времени ремонта. Полученные формулы показали наличие явной зависимости этих характеристик от типов функций распределения времени восстановления элементов системы. Однако численные исследования и анализ построенных графиков показали, что эта зависимость становится исчезающе малой при «быстром» восстановлении элементов системы.
Литература
[2] Houankpo H.G.K., Kozyrev D. Analytical Modeling and Simulation of Reliability of a Closed Homogeneous System with an Arbitrary Number of Data Sources and Limited Resources for their Processing. Sovremennye informacionnye tehnologii i IT-obrazovanie = Modern Information Technologies and IT-Education. 2018; 14(3):552-559. (In Russ., abstract in Eng.) DOI: https://doi.org/10.25559/SITITO.14.201803.552-559
[3] Houankpo H.G.K., Kozyrev D.V. Sensitivity Analysis of Steady State Reliability Characteristics of a Repairable Cold Standby Data Transmission System to the Shapes of Lifetime and Repair Time Distributions of its Elements. In: Samouilov K. E., Sevastianov L. A., Kulyabov D. S. (ed.) CEUR Workshop Proceedings. Selected Papers of the VII Conference "Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems". 2017; 1995:107-113. Available at: http://ceur-ws.org/Vol-1995/paper-15-970.pdf (accessed 16.08.2020). (In Eng.)
[4] Liu Z., Hu L., Liu S., Wang Yu. Reliability analysis of general systems with bi-uncertain variables. Soft Computing. 2020; 24(9):6975-6986. (In Eng.) DOI: https://doi.org/10.1007/s00500-019-04331-6
[5] Li Y.L., Xu G.Q. Analysis of two components parallel repairable system with vacation. Communications in Statistics - Theory and Methods. 2019. (In Eng.) DOI: https://doi.org/10.1080/03610926.2019.1670847
[6] Ge X., Sun J., Wu Q. Reliability analysis for a cold standby system under stepwise Poisson shocks. Journal of Control and Decision. 2019. (In Eng.) DOI: https://doi.org/10.1080/23307706.2019.1633961
[7] Liu Y., Qu Z., Li X., An Y., Yin W. Reliability Modeling for Repairable Systems With Stochastic Lifetimes and Uncertain Repair Times. IEEE Transactions on Fuzzy Systems. 2019; 27(12):2396-2405. (In Eng.) DOI: https://doi.org/10.1109/TFUZZ.2019.2898617
[8] Liu Y., Ma Y., Qu Z., Li X. Reliability Mathematical Models of Repairable Systems With Uncertain Lifetimes and Repair Times. IEEE Access. 2018; 6:71285-71295. (In Eng.) DOI: https://doi.org/10.1109/ACCESS.2018.2881210.
[9] Wolstenholme L.C. Reliability Modelling: A Statistical Approach. New York, Routledge, Taylor & Francis, 2018. (In Eng.) DOI: https://doi.org/10.1201/9780203740958.
[10] Varde P.V., Pecht M.G. System Reliability Modeling. In: Risk-Based Engineering. Springer Series in Reliability Engineering. Springer, Singapore; 2018. p. 71-113. (In Eng.) DOI: https://doi.org/10.1007/978-981-13-0090-5_4
[11] Gullo L.J. Reliability Models. In: Raheja D., Gullo L. J. (ed.) Design for Reliability; John Wiley & Sons, Inc.; 2012. p. 53-65. (In Eng.) DOI: https://doi.org/10.1002/9781118310052.ch4
[12] Leemis L. Reliability Modelling and Applications. Technimetrics. 1989; 31(2):268. (In Eng.) DOI: https://doi.org/10.1080/00401706.1989.10488534
[13] Fathizadeh M., Khorshidian K. An Alternative Approach to Reliability Analysis of Cold Standby Systems. Communication in Statistics - Theory and Methods. 2016; 45(21):6471-6480. (In Eng.) DOI: https://doi.org/10.1080/03610926.2014.944660
[14] Xu J.J., Xiao Z-j. Reliability Analysis of Cold Standby Compound System. Advanced Materials Research. 2014; 945-949:1116-1119. (In Eng.) DOI: https://doi.org/10.4028/www.scientific.net/AMR.945-949.1116
[15] Wu Q. Reliability analysis of a cold standby system attacked by shocks. Applied Mathematics and Computation. 2012; 218(23):11654-11673. (In Eng.) DOI: https://doi.org/10.1016/j.amc.2012.05.051
[16] Vanderperre E.J. Reliability analysis of a renewable multiple cold standby system. Operations Research Letters. 2004; 32(3):288-292. (In Eng.) DOI: https://doi.org/10.1016/j.orl.2003.10.002
[17] Kendall D.G. Stochastic Processes Occurring in the Theory of Queues and their Analysis by the Method of the Imbedded Markov Chain. Annals of Mathematical Statistics. 1953; 24(3):338-354. (In Eng.) DOI: https://doi.org/10.1214/aoms/1177728975
[18] Parshutina S.A., Bogatyrev V.A. Models to support design of highly reliable distributed computer systems with redundant processes of data transmission and handling. In: 2017 International Conference "Quality Management,Transport and Information Security, Information Technologies" (IT&QM&IS). St. Petersburg; 2017. p. 96-99. (In Eng.) DOI: https://doi.org/10.1109/ITMQIS.2017.8085772
[19] Teh J., Lai C., Cheng Y. Impact of the Real-Time Thermal Loading on the Bulk Electric System Reliability. IEEE Transactions on Reliability. 2017; 66(4):1110-1119. (In Eng.) DOI: https://doi.org/10.1109/TR.2017.2740158
[20] Sevast’yanov B.A. An Ergodic Theorem for Markov Processes and Its Application to Telephone Systems with Refusals. Theory of Probability & Its Applications. 1957; 2(1):104-112. (In Eng.) DOI: https://doi.org/10.1137/1102005
[21] Lisnianski A., Laredo D., BenHaim H. Multi-state Markov Model for Reliability Analysis of a Combined Cycle Gas Turbine Power Plant. In: 2016 Second International Symposium on Stochastic Models in Reliability Engineering, Life Science and Operations Management (SMRLO). Beer-Sheva; 2016. p. 131-135. (In Eng.) DOI: https://doi.org/10.1109/SMRLO.2016.31
[22] Billinton R., Ge J. A comparison of four-state generating unit reliability models for peaking units. IEEE Transactions on Power Systems. 2004; 19(2):763-768. (In Eng.) DOI: https://doi.org/10.1109/TPWRS.2003.821613
[23] Doob J.L. Asymptotic properties of Markoff transition prababilities. Transactions of the American Mathematical Society. 1948; 63(3):393-421. (In Eng.) DOI: https://doi.org/10.1090/S0002-9947-1948-0025097-6
[24] Trivedi K. Probability and Statistics with Reliability Queuing and Computer Science Applications. New York: Wiley; 2002. (In Eng.)
[25] Petrovsky I.G. Lekcii po teorii obyknovennyh differencial'nyh uravnenij [Lectures on the Theory of Ordinary Differential Equations]. Moscow, GITTL; 1952. (In Russ.)
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Редакционная политика журнала основывается на традиционных этических принципах российской научной периодики и строится с учетом этических норм работы редакторов и издателей, закрепленных в Кодексе поведения и руководящих принципах наилучшей практики для редактора журнала (Code of Conduct and Best Practice Guidelines for Journal Editors) и Кодексе поведения для издателя журнала (Code of Conduct for Journal Publishers), разработанных Комитетом по публикационной этике - Committee on Publication Ethics (COPE). В процессе издательской деятельности редколлегия журнала руководствуется международными правилами охраны авторского права, нормами действующего законодательства РФ, международными издательскими стандартами и обязательной ссылке на первоисточник.
Журнал позволяет авторам сохранять авторское право без ограничений. Журнал позволяет авторам сохранить права на публикацию без ограничений.
Издательская политика в области авторского права и архивирования определяются «зеленым цветом» в базе данных SHERPA/RoMEO.
Все статьи распространяются на условиях лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная, которая позволяет другим использовать, распространять, дополнять эту работу с обязательной ссылкой на оригинальную работу и публикацию в этом журналe.