Methodology for Automatic Detection of Emergency Situations at Public Transport Objects

Abstract

The presented work is devoted to the development of an information and measuring system for identifying emergency situations arising at public transport facilities. This paper presents statistics on the most common types of emergency situations occurring at public transport facilities. The paper considers a limited set of, the most common, emergency situations, automatic selection of which is possible at the present stage of science and technology.
A method for classifying emergency situations in a continuous stream of images is proposed. This method is based on the use of a fuzzy classifier based on a fuzzy model based on the Mamdani algorithm. To improve the quality of the classifier, the method for measuring the parameters of emergency situations was modernized in order to exclude from the analysis objects present in the image that are obviously of no interest. To do this, each moving object present at a given moment in time on the scene was subjected to a classification procedure based on a dynamic feature vector. In order to further increase the number of contingencies, the method of classifying contingencies in the continuous flow of images includes two stages: 1) detection of the withdrawal of certain values of the feature vector components outside the defined values; 2) a method for identifying/classifying emergency situations.
Testing of the proposed classification method and experimental testing confirmed its effectiveness.

Author Biographies

Dmitry Aleksandrovich Abramov, Tula State University

Associate Professor of the Chair of Information Security, Cand. Sci. (Eng.)

Vyacheslav Leonidovich Tokarev, Tula State University

Associate Professor of the Chair of Information Security, Dr. Sci. (Eng.), Professor

References

1. Chernyakov S.A., Dudin V.Yu. The current state of crime at transport facilities in Russia. Vestnik of Putilin Belgorod Law Institute of Ministry of the Interior of Russia. 2020;(1):48-53. Available at: https://www.elibrary.ru/item.asp?id=42668983 (accessed 13.08.2022). (In Russ., abstract in Eng.)
2. Bitsheva A.V., Nikiforov Yu.A. Criminological characteristics of road safety offences and offences concerning safe operation of vehicles: challenges, features and trends. Bulletin of the Kazan Law Institute of MIA Russia. 2022;13(1):38-45. (In Russ., abstract in Eng.) doi: https://doi.org/10.37973/KUI.2022.52.68.021
3. Zharikova Yu.I., Boltenkova Yu.V. The state of crime at railway transport facilities. In: Klevtsova M.G. ed. Issledovanie innovacionnogo potenciala obshhestva i formirovanie napravlenij ego strategicheskogo razvitija. Kursk: SWSU; 2021. p. 211-214. Available at: https://www.elibrary.ru/item.asp?id=48063251 (accessed 13.08.2022). (In Russ., abstract in Eng.)
4. Tokarev V.L., Abramov D.A. Creation of system of video analytics. News of the Tula state university. Technical sciences. 2013;(9-1):270-276. Available at: https://www.elibrary.ru/item.asp?id=21189404 (accessed 13.08.2022). (In Russ., abstract in Eng.)
5. Kodanev A.V., Polyakov M.V., Sorokina I.K. Calculation of video surveillance camera parameters on the example of a typical object. In: Proceedings of the 2020 Conference on New impulses of development: questions of scientific research. Part 1. Saratov: Digital science Publ.; 2020. p. 77-80. Available at: https://www.elibrary.ru/item.asp?id=46253533 (accessed 13.08.2022). (In Russ., abstract in Eng.)
6. Almaadeed N., Asim M., Al-Maadeed S., Bouridane A., Beghdadi A. Automatic Detection and Classification of Audio Events for Road Surveillance Applications. Sensors. 2018;18(6):1858. doi: https://doi.org/10.3390/s18061858
7. Aznan N.K.N., Brennan J., Bell D., Jonczyk J., Watson P. On the Complexity of Object Detection on Real-world Public Transportation Images for Social Distancing Measurement. arXiv:2202.06639. 2022. doi: https://doi.org/10.48550/arXiv.2202.06639
8. Bogachev M.I., Volkov V.Y., Kolaev G., Chernova L., Vishnyakov I., Kayumov A. Selection and Quantification of Objects in Microscopic Images: from Multi-Criteria to Multi-Threshold Analysis. BioNanoScience. 2019;9(1):59-65. doi: https://doi.org/10.1007/s12668-018-0588-2
9. Tokarev V.L., Abramov D.A. Methods of allocation abnormal situations in the information-measuring system surveillance. News of the Tula state university. Technical sciences. 2015;(11-1):258-265. Available at: https://www.elibrary.ru/item.asp?id=25482479 (accessed 13.08.2022). (In Russ., abstract in Eng.)
10. Maity S., Chakrabarti A., Bhattacharjee D. Background modeling and foreground extraction in video data using spatio-temporal region persistence features. Computers & Electrical Engineering. 2020;81:106520. doi: https://doi.org/10.1016/j.compeleceng.2019.106520
11. Pugin E.V., Belyaev S.Yu. Approaches to the formation of fuzzy features in digital image processing problems. Methods and devices of information transmission and processing. 2018;(20):80-85. Available at: https://www.elibrary.ru/item.asp?id=40083219 (accessed 13.08.2022). (In Russ., abstract in Eng.)
12. Volkov V.Yu., Markelov O.A., Bogachev M.I. Image segmentation and object selection based on multi-threshold processing. Journal of the Russian Universities. Radioelectronics. 2019;22(3):24-35. (In Russ., abstract in Eng.) doi: https://doi.org/10.32603/1993-8985-2019-22-3-24-35
13. Nenakhov I.D., Artemov K., Zabihifar S., Semochkin A.N., Kolyubin S.A. Objects segmentation with retraining function. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie = Journal of Instrument Engineering. 2022;65(3):194-203. (In Russ., abstract in Eng.) doi: https://doi.org/10.17586/0021-3454-2022-65-3-194-203
14. Ma J., Tsviatkou V.Yu., Kanapelka V.K. Image skeletonization based on combination of one- and two-sub-iterations models. Informatics. 2020;17(2):25-35. (In Russ., abstract in Eng.) doi: https://doi.org/10.37661/1816-0301-2020-17-2-25-35
15. Kudrina M.A., Mishenev V.S. Wave Skeletonization Algorithm of Raster Images. In: Proceedings of the IV International Conference and Youth School "Information Technologies and Nanotechnologies" (ITNT-2018). Samara: New Technology; 2018. p. 784-792. Available at: https://www.elibrary.ru/item.asp?id=34894789 (accessed 13.08.2022). (In Russ., abstract in Eng.)
16. Tokarev V.L., Abramov D.A. Tracking in the problems of safety. News of the Tula state university. Technical sciences. 2013;(9-2):215-223. Available at: https://www.elibrary.ru/item.asp?id=21191034 (accessed 13.08.2022). (In Russ., abstract in Eng.)
17. Abramov D.A. [The method of automatic detection of emergency situations based on the results of video surveillance]. Proceedings of the International Conference Mathematical Methods in Technique and Technologies ‒ MMTT-27. 2014;(4):118-120. Available at: https://www.elibrary.ru/item.asp?id=24339216 (accessed 13.08.2022). (In Russ.)
18. Tokarev V.L., Abramov D.A. Method Anomaly Detected. News of the Tula state university. Technical sciences. 2012;(12-2):219-225. Available at: https://www.elibrary.ru/item.asp?id=18982028 (accessed 13.08.2022). (In Russ., abstract in Eng.)
19. Rodrigue J.-P. Chapter 9 Transport Planning and Policy. In: The Geography of Transport Systems. 5 th ed. Routledge; 2020. 32 p. doi: https://doi.org/10.4324/9780429346323
20. Pugin E.V., Zhiznyakov A.L. Image processing algorithms for detecting objects using fuzzy features. Radio Engineering and Telecommunications Systems. 2020;(2):59-65. Available at: https://www.elibrary.ru/item.asp?id=43799895 (accessed 13.08.2022). (In Russ., abstract in Eng.)
21. Wang C., Zhou X., Tu H., Tao S. Some geometric aggregation operators based on picture fuzzy sets and their application in multiple attribute decision making. Italian Journal of Pure and Applied Mathematics. 2017;(37):477-492. Available at: https://ijpam.uniud.it/online_issue/201737/44-WangZhouTuTao.pdf (accessed 13.08.2022).
22. Privezentsev D.G., Zhiznyakov A.L., Pugin E.V. Development of fuzzy fractal representation of the image. CEUR Workshop Proceedings. 2018;2210:309-315. Available at: https://ceur-ws.org/Vol-2210/paper40.pdf (accessed 13.08.2022).
23. Prelov V. The f -Divergence and Coupling of Probability Distributions. Problems of Information Transmission. 2021;57(1):54-69. doi: https://doi.org/10.1134/S0032946021010038
24. Jabari S., Rezaee M., Fathollahi F., Zhang Y. Multispectral change detection using multivariate Kullback-Leibler distance. ISPRS Journal of Photogrammetry and Remote Sensing. 2019;147:163-177. doi: https://doi.org/10.1016/j.isprsjprs.2018.11.014
25. Tokarev V.L., Gorbunova T.I. [The choice of the optimal method for estimating the situation in the decision-making problem]. News of the Tula state university. Technical sciences. 2009;(4):76-180. Available at: https://www.elibrary.ru/item.asp?id=15224243 (accessed 13.08.2022). (In Russ.)
Published
2022-12-20
How to Cite
ABRAMOV, Dmitry Aleksandrovich; TOKAREV, Vyacheslav Leonidovich. Methodology for Automatic Detection of Emergency Situations at Public Transport Objects. Modern Information Technologies and IT-Education, [S.l.], v. 18, n. 4, p. 878-888, dec. 2022. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/918>. Date accessed: 12 sep. 2025. doi: https://doi.org/10.25559/SITITO.18.202204.878-888.
Section
Digital Transformation of Transport