Metrics for Assessing the Quality of Numerical Parameters of Dynamic Systems
Abstract
The problem of uncertainty concerning the quality of input data describing the system is one of the most significant problems in the construction of control systems for complex objects. This problem is even more acute when managing poorly formalized systems. A critical component of data quality management is the development of metrics that inform consumers about the quality characteristics that are most important for assessing the degree of suitability of the data for use. The article suggests such parameters for measuring data quality as data accuracy, which is defined as the similarity of the characteristics of a data set with non-distorted characteristics of a real object, and data reliability, which is defined as the discrepancy between the characteristics of a data set with the characteristics of an object, for which all recorded parameters are absolutely random. Formulas for determining the measures of these quality parameters using the finite difference apparatus are given. The proposed methodology provides a fairly formalized and computationally simple algorithm for evaluating the quality of a set of input parameters of a complex dynamic system. The proposed estimates are effec-tive quality metrics, the analysis of which allows you to initiate a control algorithm that extracts a useful signal from a noisy data stream. The analysis shows that a significant number of the parame-ters under consideration have a significant registration error and an insufficient degree of reliability. Consequently, the use of such data as a basis for decision-making, without taking into account the existing distortions, introduces errors in estimates and forecasts and, as a result, leads to a significant decrease in the quality of management decisions. In particular, the calculation of composite system quality indices based on a single observation of statistical measurements using mathematical meth-ods does not imply the elimination of the existing noise component of the data, as a result of which the result obtained may be implausible.
References
2. Stanisz T., Drożdż S., Kwapień J. Complex systems approach to natural language. Physics Reports. 2024;1053:1-84. https://doi.org/10.1016/j.physrep.2023.12.002
3. Hangos K.M., Tuza Zs. Optimal control structure selection for process systems. Computers & Chemical Engineering. 2001;25(11-12):1521-1536. https://doi.org/10.1016/S0098-1354(01)00716-5
4. Xue L., Liu Z.-G. Adaptive Control for Complex Systems with Dynamics and Time-Varying Powers. Complexity. 2023;2023:2127312. https://doi.org/10.1155/2023/2127312
5. Bian J., Lyu T., Loiacono A., Viramontes T.M., Lipori G.Y., Guo Y., Wu Y. Prosperi M., George T.J., Harle C.A., Shenkman E.A. Assessing the practice of data quality evaluation in a national clinical data research network through a systematic scoping review in the era of real-world data. Journal of the American Medical Informatics Association. 2020;27(12):1999-2010. https://doi.org/10.1093/jamia/ocaa245
6. Azeroual O., Abuosba M. Improving the Data Quality in the Research Information Systems. International Journal of Computer Science and Information Security. 2017;15(11):82-86. Available at: https://dspacecris.eurocris.org/retrieve/2415/Azeroual_IJCSIS_201711.pdf (accessed 14.02.2023).
7. Fürber C. Data Quality. In: Data Quality Management with Semantic Technologies. Wiesbaden: Springer Gabler; 2016. p. 20-55. https://doi.org/10.1007/978-3-658-12225-6_3
8. Batini C., Scannapieca M. Data Quality Dimensions. In: Data Quality. Data-Centric Systems and Applications. Berlin, Heidelberg: Springer; 2006. p. 19-49. https://doi.org/10.1007/3-540-33173-5_2
9. Herzog T.N., Scheuren F.J., Winkler W.E. What is Data Quality and Why Should We Care? In: Data Quality and Record Linkage Techniques. New York, NY: Springer; 2007. p. 7-15. https://doi.org/10.1007/0-387-69505-2_2
10. Wang R.Y., Kon H.B., Madnick S.E. Data quality requirements analysis and modeling. In: Proceedings of the 9th International Conference of Data Engineering. Vienna, Austria; 993. p. 670-677. Available at: https://web.mit.edu/tdqm/www/tdqmpub/IEEEDEApr93.pdf (accessed 14.02.2023).
11. Redman T.C. Data Driven: Profiting from Your Most Important Business Asset. Harvard Business Press; 2008. 272 p.
12. Fadahunsi K.P., Akinlua J.T., O Connor S., Wark P.A., Gallagher J., Carroll C., Majeed A., O Donoghue J. Protocol for a systematic review and qualitative synthesis of information quality frameworks in eHealth. BMJ Open. 2019;9(3):e024722. https://doi.org/10.1136/bmjopen-2018-024722
13. Redman . Data Quality: The Field Guide. Digital Press; 2001. 260 p.
14. English L.P. Improving Data Warehouse and Business Information Quality: Methods For Reducing Costs And Increasing Profits. John Wiley and Sons; 1999. 544 p.
15. Jugulum R. Competing with High Quality Data. Wiley; 2014. 307 p.
16. Caballero I., Gualo F., Rodríguez M., Piattini M. BR4DQ: A methodology for grouping business rules for data quality evaluation. Information Systems. 2022;109:102058. https://doi.org/10.1016/j.is.2022.102058
17. Batini C., Scannapieco M. Data Quality: Concepts, Methodologies and Techniques. Data-Centric Systems and Applications. Berlin: Springer; 2006. 262 p. https://doi.org/10.1007/3-540-33173-5
18. Myers D. The Value of Using the Dimensions of Data Quality. Information Management. 2013. p. 1-5. Available at: https://dqmatters.com/_download/2013-04-01_the-value-of-using-the-dimensions-of-data-quality(DanMyers).pdf?src=imdm2013 (accessed 14.02.2023).
19. Sebastian-Coleman L. Measuring Data Quality for Ongoing Improvement: A Data Quality Assessment Framework. Morgan Kaufmann; 2013. 376 p. https://doi.org/10.1016/C2011-0-07321-0
20. Wang J., Liu Y., Li P., Lin Z., Sindakis S., Aggarwal S. Overview of Data Quality: Examining the Dimensions, Antecedents, and Impacts of Data Quality. Journal of the Knowledge Economy. 2023. https://doi.org/10.1007/s13132-022-01096-6
21. Zhgun T.V. Evaluation of Statistical Data Quality in the Problem of Calculating the Inte-gral Characteristic of a System for a Number of Observations. Modern Information Technologies and IT-Education. 2020;16(2):295-303. (In Russ., abstract in Eng.) https://doi.org/10.25559/SITITO.16.202002.295-303
22. Zhgun T.V. Investigation of data quality in the problem of calculating the composite index of a system from a series of observations. Journal of Physics: Conference Seriesthis. 2020;1658(1):012082. https://doi.org/10.1088/1742-6596/1658/1/012082
23. Zhgun T.V. Data transformations when constructing a composite system quality index. Journal of Physics: Conference Seriesthis. 2021;2052:012058. https://doi.org/10.1088/1742-6596/2052/1/012058
24. Zhgun T.V. Complex index of a system s quality for a set of observations. Journal of Physics: Conference Series. 2019;1352(1):012064. https://doi.org/10.1088/1742-6596/1352/1/012064
25. Zhgun T.V. The Application of Data Transformations in the Calculation of a Composite Index of a System s Quality. Modern Information Technologies and IT-Education. 2021;17(3):550-563. (In Russ., abstract in Eng.) https://doi.org/10.25559/SITITO.17.202103.550-563

This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication policy of the journal is based on traditional ethical principles of the Russian scientific periodicals and is built in terms of ethical norms of editors and publishers work stated in Code of Conduct and Best Practice Guidelines for Journal Editors and Code of Conduct for Journal Publishers, developed by the Committee on Publication Ethics (COPE). In the course of publishing editorial board of the journal is led by international rules for copyright protection, statutory regulations of the Russian Federation as well as international standards of publishing.
Authors publishing articles in this journal agree to the following: They retain copyright and grant the journal right of first publication of the work, which is automatically licensed under the Creative Commons Attribution License (CC BY license). Users can use, reuse and build upon the material published in this journal provided that such uses are fully attributed.