The Relevance of Creating a Digital Twin for Managing Distributed Centers for Collecting, Storing and Processing Data
Abstract
The work discusses the areas of application of digital twins. The focus is on the possibilities of using digital twins for data centers. The growing popularity of distributed systems for collecting, storing and processing ultra-large volumes of data in various areas of human activity leads to the need to create digital twins. The main element of the digital twin is the component that models the system. In this regard, the advantages and disadvantages of existing tools for modeling distributed storage and data processing centers, in particular the highly specialized libraries Bricks, OptorSim and GridSim, as well as software packages based on the listed tools, are justified. Based on the analysis, it was concluded that it is necessary to create a different approach to modeling, the implementation of which will make it possible to create digital twins of distributed systems to conduct research in the field of efficiency and reliability of functioning of distributed centers for collecting, storing and processing data. It will be possible to test various scaling scenarios for complex distributed systems, taking into account the processes occurring in the system and the requirements for data flows and task flows. In conclusion, the article provides formulations of tasks for developing a software tool that will allow creating digital twins of distributed centers for collecting, storing and processing data.
References
2. Barricelli B.R., Casiraghi E., Fogli D. Definitions, Characteristics, Applications, and Design Implications. IEEE Access. 2019;7:167653-167671. https://doi.org/10.1109/ACCESS.2019.2953499
3. Denisov A.S., Kuverin I.Yu. Features of the circuitry solution of use of piezometers by development of diagnostic aids of cars. Tekhnicheskoe regulirovanie v transportnom stroitel stve = Technical Regulation in Transport Construction.2020;(3):165-168. (In Russ., abstract in Eng.) EDN: YGLIID
4. Yang J., Zhang W., Liu Y. Subcycle fatigue crack growth mechanism investigation for aluminum alloys and steel (special session on the digital twin). In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Boston, MA, United States; 2013. https://doi.org/10.2514/6.2013-1499
5. Shalumov A.S., Shalumova N.A., Shalumov M.A. Aviation electronics digital twin: simulation of physical processes in the formation of an electronic model. Automation. Modern Technologies. 2021;75(9):403-415. (In Russ., abstract in Eng.) EDN: LSASMI
6. Filatov A.R. A digital twin of the ship hull, purpose and main principles of development. Transactions of the Krylov State Research Centre. 2021;(4):87-92. (In Russ., abstract in Eng.) https://doi.org/10.24937/2542-2324-2021-4-398-87-92
7. Shevchenko D.V. Methodology for constructing digital twins in railway transport. Russian Railway Science Journal. 2021;80(2):91-99. (In Russ., abstract in Eng.) https://doi.org/10.21780/2223-9731-2021-80-2-91-99
8. Bykova V.N., Kim E., Gadzhialiev M.R., Musienko V.O., Orudzhev A.O., Turovskaya E.A. Application of a digital twin in the oil and gas industry. Actual Problems of Oil and Gas. 2020;(1):8. (In Russ., abstract in Eng.) https://doi.org/10.29222/ipng.2078-5712.2020-28.art8
9. Tikhonov A.I., Stulov A.V., Karzhevin A.A., Podobny A.V. Development of a nonlinear model of a three-phase transformer to study the effect of asymmetry of the magnetic system on the operation of the device in arbitrary modes. Vestnik IGEU. 2020;(1):22-31. (In Russ., abstract in Eng.) https://doi.org/10.17588/2072-2672.2020.1.022-031
10. Bruynseels K., Santoni de Sio F., Hoven J. Digital Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm. Frontiers in genetics. 2018;9:31. https://doi.org/10.3389/fgene.2018.00031
11. Lehtola V.V., Koeva M., Elberink S.O., Raposo P., Virtanen J.P., Vahdatikhaki F., Borsci S. Digital twin of a city: Review of technology serving city needs. International Journal of Applied Earth Observation and Geoinformation. 2022;114:102915. https://doi.org/10.1016/j.jag.2022.102915
12. Ivanov S.A., Nikolskaya K.Yu., Radchenko G.I., Sokolinsky L.B., Zymbler M.L. Digital Twin of a City: Concept Overview. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering. 2020;9(4):5-23. (In Russ., abstract in Eng.) https://doi.org/10.14529/cmse200401
13. Amirxanyan A.G. Cifrovye dvojniki v logistike [Digital twins in logistics]. Modern science. 2020;(1-2):37-40. (In Russ., abstract in Eng.) EDN: QTZJIE
14. Rosen R., Wichert G. Von, Bettenhausen K.D. About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine. 2015;48(3):567-572. https://doi.org/10.1016/j.ifacol.2015.06.141
15. Nemati K., Zabalegui A., Bana M., Seymour M.J. Quantifying data center performance. In: 2018 34th Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). San Jose, CA, USA; 2018. p. 141-147. https://doi.org/10.1109/SEMI-THERM.2018.8357365
16. Berezhnaya A., Dolbilov A., Ilyin V., Korenkov V., Lazin Y., Lyalin I., Mitsyn V., Ryabinkin E., Shmatov S., Strizh T., Tikhonenko E., Tkachenko I., Trofimov V., Velikhov V., Zhiltsov V. LHC Grid Computing in Russia: presentand future. Journal of Physics: Conference Series. 2014;513:062041. https://doi.org/10.1088/1742-6596/513/6/062041
17. Kekelidze V., Kovalenko A., Lednicky R., Matveev V., Meshkov I., Sorin A., Trubnikov G. The NICA Project at JINR Dubna. EPJ Web of Conferences. 2014;71:00127. https://doi.org/10.1051/epjconf/20147100127
18. Serebrov A.P., Vassiljev A.V., Varlamov V.E., Geltenbort P., Gridnev K.A., Dmitriev S.P., Dovator N.A., Egorov A.I., Ezhov V., Zherebtsov O.M., Zinoviev V.G., Ivochkin V.G., Ivanov S.N., Ivanov S.A., Kolomensky E.A., Konoplev K.A., Krasnoschekova I.A., Lasakov M.S., Lyamkin V., Martemyanov L.P., Murashkin A.N., Neustroev P.V., Onegin M.S., Petelin A.L., Pirozhkov A., Polyushkin A.O., Prudnikov D.V., Ryabov V., Samoylov R.M., Sbitnev S.V., Fomin A.K., Fomichev A.V., Zimmer O., Cherny A., Shoka I. Program for studying fundamental interactions at the PIK reactor facilities. Physics of Atomic Nuclei. 2016;79(3):293-303. https://doi.org/10.1134/S1063778816030145
19. Baranov G.N., Bogomyagkov A.V., Levichev E.B., Sinyatkin S.V. Magnet lattice optimization for Novosibirsk fourth generation light source SKIF. Siberian Journal of Physics. 2020;15(1):5-23. (In Russ., abstract in Eng.) https://doi.org/10.25205/2541-9447-2020-15-1-5-23
20. Avrorin A.D., Avrorin A.V., Aynutdinov V.M., Bannash R., Belolaptikov I.A., Brudanin V.B., Budnev N.M., Doroshenko A.A., Domogatsky G.V., Dvornický R., Dyachok A.N., Dzhilkibaev Z.A., Fajt L., Fialkovsky S.V., Gafarov A.R., Golubkov K.V., Gres T.I., Honz Z., Kebkal K.G., Kebkal O.G., Khramov E.V., Kolbin M.M., Konischev K.V., Korobchenko A.P., Koshechkin A.P., Kozhin V.A., Kulepov V.F., Kuleshov D.A., Milenin M.B., Mirgazov R.A., Osipova E.R., Panfilov A.I., Pan kov L.V., Petukhov D.P., Pliskovsky E.N., Rozanov M.I., Rjabov E.V., Rushay V.D., Safronov G.B., Simkovic F., Shoibonov B.A., Solovjev A.G., Sorokovikov M.N., Shelepov M.D., Suvorova O.V., Shtekl I., Tabolenko V.A., Tarashansky B.A., Yakovlev S.A., Zagorodnikov A.V., Zurbanov V.L. Baikal-GVD: status and prospects. EPJ Web of Conferences. 2018;191:01006. https://doi.org/10.1051/epjconf/201819101006
21. An F., et al. Neutrino Physics with JUNO. Journal of Physics G: Nuclear and Particle Physics. 2016;43(3):030401. https://doi.org/10.1088/0954-3899/43/3/030401
22. Korenkov V.V., Nechaevskiy A.V. DataGrid simulation packages. Sistemnyj analiz v nauke i obrazovanii = System Analysis in Science and Education. 2009;(1):21-35. (In Russ., abstract in Eng.) EDN: KNNWPL
23. Korenkov V.V., Nechaevskiy A.V., Ososkov G.A., Pryahina D.I., Trofimov V.V., Uzhinskiy A.V. Simulation of Grid and Cloud Services as the Means of the Efficiency Improvement of Their Development. CEUR Workshop Proceedings. 2014;1297:13-19. Available at: https://ceur-ws.org/Vol-1297/13-19_paper-4.pdf (accessed 08.09.2023). (In Russ., abstract in Eng.)
24. Korenkov V.V., Nechaevskiy A.V., Ososkov G.A., Pryahina D.I., Trofimov V.V., Uzhinskiy A.V. Synthesis of the simulation and monitoring processes for the development of big data storage and processing facilities in physical experiments. Computer Research and Modeling. 2015;7(3):691-698. (In Russ., abstract in Eng.) https://doi.org/10.20537/2076-7633-2015-7-3-691-698
25. Kadochnikov I., Korenkov V., Mitsyn V., Pelevanyuk I., Strizh T. Service monitoring system for JINR Tier-1. EPJ Web of Conferences. 2019;214:08016. https://doi.org/10.1051/epjconf/201921408016
26. Korenkov V.V., Nechaevskiy A.V., Ososkov G.A., Pryakhina D.I., Trofimov V.V., Uzhinskiy A.V. Grid and cloud services simulation as an important step of their development. Sistemy i Sredstva Informatiki = Systems and Means of Informatics. 2015;25(1):4-19. (In Russ., abstract in Eng.) https://doi.org/10.14357/08696527 50 0
27. Nechaevskiy A.V., Pryahina D.I., Uzhinskiy A.V. Web-service development for the physical experiments data storage and processing simulation. Sistemnyj analiz v nauke i obrazovanii = System Analysis in Science and Education. 2015;(4):28-35. (In Russ., abstract in Eng.) EDN: WMEKGF
28. Korenkov V., Nechaevskiy A., Ososkov G., Pryahina D., Trofimov V., Uzhinskiy A., Balashov N. Web-Service Development of the Grid- loud Simulation Tools. Procedia Computer Science. 2015;66:533-539. https://doi.org/10.1016/j.procs.2015.11.060
29. Korenkov V., Nechaevskiy A., Ososkov G., Pryahina D., Trofimov V., Uzhinskiy A. Simulation concept of NICA-MPD-SPD Tier0-Tier1 computing facilities. Particles and Nuclei Letters. 2016;13(5):693-699. https://doi.org/10.1134/S154747711605029041
30. Kutovskiy N.A., Nechaevskiy A.V., Ososkov G.A., Pryahina D.I., Trofimov V.V. Simulation of interprocessor interactions for MPI-applications in the cloud infrastructure. Computer Research and Modeling. 2017;9(6):955-963. (In Russ., abstract in Eng.) https://doi.org/10.20537/2076-7633-2017-9-6-955-963
31. Nechaevskiy A., Ososkov G., Pryahina D., Trofimov V., Li W. Simulation approach for improving the computing network topology and performance of the China IHEP Data Center. EPJ Web of Conferences. 2019;214:08018. https://doi.org/10.1051/epjconf/201921408018

This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication policy of the journal is based on traditional ethical principles of the Russian scientific periodicals and is built in terms of ethical norms of editors and publishers work stated in Code of Conduct and Best Practice Guidelines for Journal Editors and Code of Conduct for Journal Publishers, developed by the Committee on Publication Ethics (COPE). In the course of publishing editorial board of the journal is led by international rules for copyright protection, statutory regulations of the Russian Federation as well as international standards of publishing.
Authors publishing articles in this journal agree to the following: They retain copyright and grant the journal right of first publication of the work, which is automatically licensed under the Creative Commons Attribution License (CC BY license). Users can use, reuse and build upon the material published in this journal provided that such uses are fully attributed.