On Modeling Homing Missile Guidance Methods in the Wolfram Mathematica System

Abstract

Modern air defense systems are very complex and high-tech products. To design them and analyze their capabilities, you need to use very complex mathematical models. At the same time, the development of both air attack and air defense systems is taking place at a rapid pace, so the emerging modeling problems need effective and visual solutions. One of these tasks is to simulate the guidance of an anti-aircraft guided missile on an air target.
It is also important to develop an effective methodology for teaching cadets of military universities methods of computer modeling of problems arising in their practice. Moreover, this problem should be solved both when they study the course of higher mathematics and special disciplines.
When mathematically modeling the guidance of anti-aircraft guided missiles, in particular, homing missiles, it is necessary to solve systems of differential equations of a rather complex structure. The study of such systems in the course of scientific research or during the training of cadets of higher military educational institutions requires a lot of time and effort. Modern scientific software, in particular, the Wolfram Mathematica system, makes this work much easier, which makes it possible to widely use this system.
The paper presents models of homing missiles using the chase method and the method of a constant lead angle for various purposes, and shows the convenience of using the Mathematica system to estimate the required acceleration of the rocket. This allows you to evaluate the effectiveness of shooting at various targets and the zone of destruction of an anti-aircraft missile system. In the course of the study, the expediency of using this technique in conducting scientific research and training cadets of military universities is justified.

Author Biographies

Vladimir Romanovich Kristalinskii, Smolensk State University

Associate Professor of the Department of Computer Science, Faculty of Physics and Mathematics, Ph.D. (Phys.-Math.), Associate Professor

Sergei Nikolaevich Chernyi, Russian Federation Armed Forces Army Air Defence Military Academy named after Marshal of the Soviet Union A.M.Vasilevsky

Head of the Scientific and Research Centre, Ph.D. (Engineering), Associate Professor

References

[1] Neupokoev F.K. Strel'ba zenitnymi raketami [Anti-aircraft missiles firing]. Voenizdat Publ., Moscow; 1991. (In Russ.)
[2] Kristalinskii V.R., Konstantinov G.V. O modelirovanii metodov navedeniya zenitnyh upravlyaemyh raket s pomoshch'yu sistemy Wolfram Mathematica [On simulation of antiaircraft guided missile guidance methods using the Wolfram Mathematica system]. Sistemy komp’yuternoj matematiki i ih prilozheniya = Computer Mathematics Systems and Their Applications. 2020; (21):52-58. Available at: https://www.elibrary.ru/item.asp?id=44237953 (accessed 14.09.2020). (In Russ., abstract in Eng.)
[3] Izhko V.A., Yemelyanova I.A., Reznik I.M., Khorolskiy P.G. Optimizaciya traektorii zenitnoj upravlyaemoj rakety [Optimization of the trajectory of the antiaircraft guided missile]. Space Technology. Missile Armaments. 2019; (2):3-10. Available at: https://journal.yuzhnoye.com/index.php/stma/annot_1_2_2019 (accessed 14.09.2020). (In Russ., abstract in Eng.)
[4] Kitov A.I. Jelektronnaja vychislitel'naja tehnika i ejo voennoe primenenie [Electronic computing technology and its military applications]. Voennaya mysl' = Military Thought. 1956; (7):25-35. (In Russ.)
[5] Makarov S.E., Makarova I.D. Pakety komp'juternoj matematiki dlja postroenija fazovyh traektorij differencial'nyh uravnenij [Packages of computer mathematics for constructing phase trajectories of differential equations]. Aktual'nye problemy prepodavaniya matematiki v tekhnicheskom vuze. 2019; (7):180-187. Available at: https://www.elibrary.ru/item.asp?id=41484501 (accessed 14.09.2020). (In Russ.)
[6] Zubareva O.S., Skachkova E.A. O vozmozhnosti ispol'zovanija paketa Wolfram Mathematica v izuchenii kursa obyknovennyh differencial'nyh uravnenij v vuze [On the possibility of using the Wolfram Mathematica package in studying the course of ordinary differential equations at the university]. Voprosy Pedagogiki. 2019; (11-2):93-98. Available at: https://www.elibrary.ru/item.asp?id=41414506 (accessed 14.09.2020). (In Russ.)
[7] Bezruchko A.S. Nekotorye vozmozhnosti izucheniya kursa differencial'nyh uravnenij, realizuemye sistemami komp'yuternoj matematiki [Some possibilities of studying the course of differential equations implemented by the system of computer mathematics]. Vestnik Rossiiskogo universiteta druzhby narodov. Seriya: Informatizatsiya obrazovaniya = RUDN Journal of Informatization in Education. 2013; (3):68-75. Available at: https://www.elibrary.ru/item.asp?id=20266219 (accessed 14.09.2020). (In Russ., abstract in Eng.)
[8] Aslanov R.M., Bezruchko A.S., Matrosov V.L. Komp'yuternaya podderzhka resheniya sistem obyknovennyh differencial'nyh uravnenij i ee ispol'zovanie v uchebnom processe pedvuza [Computer support of the decision of systems of ordinary differential equations and its use in educational process of teacher training university]. Science and School. 2013; (3):57-60. Available at: https://www.elibrary.ru/item.asp?id=19116963 (accessed 14.09.2020). (In Russ., abstract in Eng.)
[9] Sachkova O.A. Dinamicheskaya vizualizaciya resheniya differencial'nyh uravnenij pri prepodavanii vysshej matematiki [Dynamic visualization of solutions of differential equations in the course of higher mathematics]. Scientific Notes Kazan Bauman State Academy of Veterinary Medicine. 2014; 219(3):242-248. Available at: https://www.elibrary.ru/item.asp?id=22377190 (accessed 14.09.2020). (In Russ., abstract in Eng.)
[10] Ignat’ev Yu.G., Samigullina A.R. Programmnyj kompleks chislenno-analiticheskogo modelirovaniya nelinejnyh dinamicheskih sistem v SKM Maple [Program complex for numerical and analytical mathematical modeling of nonlinear dynamic systems in CAS Maple]. Prostranstvo, vrema i fundamental’nye vzaimodejstvia = Space, Time and Fundamental Interactions. 2016; (4):147-148. Available at: https://www.elibrary.ru/item.asp?id=28380886 (accessed 14.09.2020). (In Russ., abstract in Eng.)
[11] Tchikurov N.G. Reshenie slozhnyh traektornyh zadach v ustrojstvah CHPU klassa ICNC [the decision of problems of difficult trajectories in devices CHPU of class ICNC. Vestnik USATU. 2010; 14(2):170-177. Available at: https://www.elibrary.ru/item.asp?id=18862100 (accessed 14.09.2020). (In Russ., abstract in Eng.)
[12] Abdulla H.H.M. Chislenno-analiticheskie metody matematicheskogo modelirovaniya nelinejnyh obobshchenno-mekhanicheskih sistem v srede komp'yuternoj matematike Maple [Numerical and analytical methods of mathematical modeling of nonlinear generalized mechanical systems in the environment of computer mathematics Maple]: diss. ... Ph.D. (Engineering). TGGPU, Kazan; 2011. (In Russ.)
[13] Makarova I.D., Makarov S.E. Ispol'zovanie MatLab i paketa R dlya resheniya sistem obyknovennyh differencial'nyh uravnenij v kurse matematiki [Using MatLab and the R package for solving systems of ordinary differential equations in a mathematics course]. Aktual'nye problemy prepodavaniya matematiki v tekhnicheskom vuze. 2018; (6):177-183. Available at: https://www.elibrary.ru/item.asp?id=36476375 (accessed 14.09.2020). (In Russ.)
[14] Babchenok A.A., Sрaban S.A., Eromin A.M. Sintez kontura upravleniya samonavodyashchejsya rakety pri uchete dinamiki izmeritel'nogo ustrojstva [Synthesis of the control loop of a homing missile taking into account the dynamics of the measuring device]. In: Proceedings of the XIV International conference Science to education, economy and production. BNTU, Minsk. 2016; 1:216. Available at: https://rep.bntu.by/handle/data/27571 (accessed 14.09.2020). (In Russ.)
[15] Markevich V.E., Legkostup V.V. Analiticheskoe proektirovanie ustrojstva upravleniya raketoj dlya perekhvata aerodinamicheskoj celi [Analytical design of the missile control device to intercept aerodynamic target]. System analysis and applied information science. 2019; (1):41-49. Available at: https://www.elibrary.ru/item.asp?id=39164845 (accessed 14.09.2020). (In Russ., abstract in Eng.)
[16] Malkin V.A. Optimal'noe upravlenie samonavodyashchimsya ob"ektom s peremennym poryadkom fil'tra izmeritelya [Optimum control of homing object with the variable degree of the measurer filter]. Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioèlektroniki = Doklady BGUIR. 2006; (1):19-26. Available at: https://libeldoc.bsuir.by/bitstream/123456789/30993/1/Malkin_Optimum.pdf (accessed 14.09.2020). (In Russ., abstract in Eng.)
[17] Lyubushkin K.E., Petrova I.L., Sidorovich D.D. Razrabotka oblika sistemy distancionnogo obucheniya s elementami virtual'noj real'nosti dlya resheniya zadach dinamiki poleta [Development of the image of a distance learning system with elements of virtual reality for solving problems of flight dynamics]. In: Proceedings of the All-Russian Scientific and Technical Conference "The Eighth Utkin Readings". BSTU "Voenmeh" them. D.F. Ustinova, St. Petersburg; 2019. p. 243-249. Available at: https://www.elibrary.ru/item.asp?id=37620997 (accessed 14.09.2020). (In Russ.)
[18] Zharkov S.V., Guenko A.V. Analytic description of SAM self-homing dynamics at maneuvering target. Vestnik vozdušno-kosmičeskoj oborony = Aerospace Defense Herald. 2017; (2):41-44. Available at: https://www.elibrary.ru/item.asp?id=29344247 (accessed 14.09.2020). (In Russ., abstract in Eng.)
[19] Yang Z., Zhou D., Pan Q., Li X., Zhang K. Research on adaptive robust guidance law for passive homing missile against maneuvering target. In: 2017 IEEE International Conference on Information and Automation (ICIA). Macau; 2017. p. 527-530. (In Eng.) DOI: https://doi.org/10.1109/ICInfA.2017.8078964
[20] Wang Z. Adaptive smooth second-order sliding mode control method with application to missile guidance. Transactions of the Institute of Measurement and Control. 2017; 39(6):848-860. (In Eng.) DOI: https://doi.org/10.1177/0142331215621616
[21] Duhri R.A., Sasongko R.A., Laksmana Y.D. Design and Simulation of Air to Air Missile Homing System. INSIST. 2017; 2(2):75-80. (In Eng.) DOI: https://doi.org/10.23960/ins.v2i2.84
[22] Liu Z. Constant Bearing Guidance Law for Homing Missiles. In: 2017 10th International Symposium on Computational Intelligence and Design (ISCID). Hangzhou, China; 2017. p. 247-251. (In Eng.) DOI: https://doi.org/10.1109/ISCID.2017.168
[23] Tian J., Chen H., Liu X., Yang H., Zhang S. Integrated Strapdown Missile Guidance and Control With Field-of-View Constraint and Actuator Saturation. IEEE Access. 2020; 8:123623-123638. (In Eng.) DOI: https://doi.org/10.1109/ACCESS.2020.3006128
[24] Stefański K. An Application of a Special Method for Designating the Control Forces for the Homing of an Anti-Aircraft Missile on an Aerial Target by Use of a Method of Proportional Navigation. Problems of Mechatronics. Armament, Aviation, Safety Engineering. 2018; 9(4):149-162. (In Eng.) DOI: https://doi.org/10.5604/01.3001.0012.7339
[25] Bużantowicz W., Pietrasieński J. Dual-control missile guidance: a simulation study. Journal of Theoretical and Applied Mechanics. 2018; 56(3):727-739. (In Eng.) DOI: https://doi.org/10.15632/jtam-pl.56.3.727
Published
2020-11-30
How to Cite
KRISTALINSKII, Vladimir Romanovich; CHERNYI, Sergei Nikolaevich. On Modeling Homing Missile Guidance Methods in the Wolfram Mathematica System. Modern Information Technologies and IT-Education, [S.l.], v. 16, n. 3, p. 686-694, nov. 2020. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/700>. Date accessed: 12 sep. 2025. doi: https://doi.org/10.25559/SITITO.16.202003.686-694.
Section
Scientific software in education and science