About the Study of a Simulation Mathematical Model of a Complex Technical System in Modern Systems of Computer Mathematics
Abstract
The study of the functioning of complex technical systems is one of the central tasks of mathematical and computer modeling. Currently, many approaches for solving this problem have been developed. One of such approaches is simulation modeling. It is applicable, in particular, if the object of the study is a discrete system with a stochastic nature of functioning. In this paper, we consider the construction of such a model on the example of the functioning of a complex technical system, taking into account the impact of the results of the functioning of systems with opposite goals, as well as the technical and functional characteristics of the participants in the process, which makes them attractive for analyzing the behavior of a factor affecting the effectiveness of functioning and performance of tasks for their intended purpose. Obviously, the nature of this process allows us to consider it as a queuing process. This predetermines the hypothesis of Poisson incoming flows of applications and recovery flows circulating within the system.
The process of computer modeling of such systems seems to be very difficult to implement on a computer, since the number of states is large. With the advent of modern computer mathematics systems, in particular, the Wolfram Mathematica system, the possibilities of studying such models are significantly increasing. At the same time, Wolfram Mathematica allows you to study systems in two ways: to make Kolmogorov equations for the probabilities of the states of the system explicitly and obtain their analytical or numerical solutions, or to build a matrix of transition rates and use the system command designed to analyze Markov processes with continuous time.
The application of the proposed approach allows us to build a model of the process of functioning of a complex technical system, taking into account the main factors affecting the outcome of the confrontation, adopted in a probabilistic form, which allows us to solve various optimization problems with its help.
References
2. Cherkesov G.N., Nedosekin A.O. Description of approach to estimating survivability of complex structures under repeated impacts of high accuracy. Nadëžnostʹ = Dependability. 2016; (2):3-15. (In Russ., abstract in Eng.) doi: https://doi.org/10.21683/1729-2646-2016-16-2-3-15
3. Bernardi S., Dranca L., Merseguer J. A model-driven approach to survivability requirement assessment for critical systems. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. 2016; 230(5):485-501. (In Eng.) doi: https://doi.org/10.1177/1748006X15626017
4. Azarenok I.P., Pet'kov A.A. Konceptual'nye podhody k postroeniyu sistemy protivovozdushnoj oborony gosudarstva [Conceptual approaches to the construction of the state air defense system]. Nauka i voennaya bezopasnost' = Science and Military Security. 2007; (4):13-18. Available at: http://militaryarticle.ru/nauka-i-voennaya-bezopasnost/2007/11995-konceptualnye-podhody-k-postroeniju-sistemy (accessed 19.05.2022). (In Russ., abstract in Eng.)
5. Popov B.E., Kubrin G.S., Shul'deshov L.S. Modelirovanie korabel'nogo protivovozdushnogo boya s primeneniem metoda linejnogo programmirovaniya [Modeling of naval anti-aircraft combat using the linear programming method]. Nedelya nauki SPbSTU = Week of Science. SPbSTU, SPb; 2018. p. 391-393. Available at: https://www.elibrary.ru/item.asp?id=32820525 (accessed 19.05.2022). (In Russ.)
6. Mustafaev N.G., Leontyev R.V., Idilieva Ye.V. Sostoyanie i perspektivy imitacionnogo modelirovaniya ispytanij avtomatizirovannyh sistem upravleniya protivovozdushnoj oborony [The condition and prospects of imitation modeling for the trials of automated control systems of air defense]. Voennaya mysl' = Military Thought. 2021; (2):98-106. Available at: https://www.elibrary.ru/item.asp?id=44821753 (accessed 19.05.2022). (In Russ., abstract in Eng.)
7. Stepanov V.V. Modelirovanie konturov boevogo upravleniya silami i sredstvami bor'by s vozdushnym protivnikom nadvodnyh korablej s primeneniem metodov iskusstvennogo intellekta [Modeling the contours of the combat control of forces and means of combating the air enemy of surface ships using artificial intelligence methods]. Aktual'nye problemy zashchity i bezopasnosti. RARAN, SPb; 2021. 3:33-39. Available at: https://www.elibrary.ru/item.asp?id=46476573 (accessed 19.05.2022). (In Russ.)
8. Shcherbakov E.S., Dorozhkin A.D., Kolyvanov A.V. Potencial'nye vozmozhnosti prognozirovaniya hoda i iskhoda boevyh dejstvij s primeneniem razlichnyh vidov matematicheskih modelej [Potential possibilities of predicting the course and outcome of hostilities using various types of mathematical models]. Imitacionnoe modelirovanie. Teoriya i praktika. ICS RAS, Moscow; 2015. p. 404-408. Available at: https://www.elibrary.ru/item.asp?id=25420661 (accessed 19.05.2022). (In Russ.)
9. Bogdanov O.A., Smirnov A.A., Kovalev D.V. Imitacionnoe modelirovanie protivoborstva v vozdushno-kosmicheskoj sfere [Imitation modeling for aerospace confrontation]. Programmnye produkty i sistemy = Software & Systems. 2016; (1):160-165. (In Russ., abstract in Eng.) doi: https://doi.org/10.15827/0236-235X.113.160-165
10. Selivanov V.V., Ilyin Yu.D. The effect of survivability on the combat and military-economic efficiency of military technical systems. Voennaya mysl' = Military Thought. 2021; (9):99-112. Available at: https://www.elibrary.ru/item.asp?id=47108863 (accessed 19.05.2022). (In Russ., abstract in Eng.)
11. Chuev V.Yu., Dubogray I.V. Stochasticism and Determinism in Simulation Bilateral Warfare. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki = Herald of the Bauman Moscow State Tech. Univ., Nat. Sci. 2017; (4):16-28. (In Russ., abstract in Eng.) doi: https://doi.org/10.18698/1812-3368-2017-4-16-28
12. Hugaeva M.V., Cahoeva A.F. Modelirovanie ekonomicheskih sistem na osnove markovskih sluchajnyh processov [Modeling economic systems based on Markov random processes]. Byulleten' Vladikavkazskogo instituta upravleniya = Bulletin of the Vladikavkaz Institute of Management. 2017; (52):159-164. Available at: https://www.elibrary.ru/item.asp?id=32824529 (accessed 19.05.2022). (In Russ.)
13. Lubentcova V.S., Efremov A.V. Modelirovanie proizvodstvennoj programmy avtotransportnogo predpriyatiya s ispol'zovaniem markovskih sluchajnyh processov [Modeling the production program of a motor transport enterprise using Markov random processes]. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Fiziko-matematicheskie nauki = Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences. 2002; (16):155-160. (In Russ., abstract in Eng.) doi: https://doi.org/10.14498/vsgtu114
14. Permyakova M.A., Permyakova O.V. Veroyatnostnyj podhod k proektirovaniyu SZI s primeneniem markovskih processov [Probabilistic approach to the design of IPS using Markov processes]. Aktual'nye problemy sovremennoj nauki, tekhniki i obrazovaniya. 2017; 1:214-217. Available at: https://www.elibrary.ru/item.asp?id=29929896 (accessed 19.05.2022). (In Russ.)
15. Zelentsov B.P. Correlations between states and events in the simulation of dependability using Markov processes. Nadëžnostʹ = Dependability. 2022; 22(1):38-43. (In Russ., abstract in Eng.) doi: https://doi.org/10.21683/1729-2646-2022-22-1-38-43
16. Petrovsky E.A., Gagina M.V. Primenenie metodov markovskih processov dlya modelirovaniya nadezhnosti i riska oborudovaniya neftegazovogo kompleksa [Application of Markov Process Methods for Reliability and Risk Modeling of Oil and Gas Complex Equipment]. Nadezhnost' i kachestvo. 2015; 2:312-313. Available at: https://www.elibrary.ru/item.asp?id=23907640 (accessed 19.05.2022). (In Russ.)
17. Shcheglov K.A., Shcheglov A.Yu. Korrektnost' markovskih modelej s diskretnymi sostoyaniyami i nepreryvnym vremenem [Correctness of Markov models with discrete states and continuous time]. Izvestiya vysshih uchebnyh zavedenij. Priborostroenie = Journal of Instrument Engineering. 2019; 62(1):40-49. (In Russ., abstract in Eng.) doi: https://doi.org/10.17586/0021-3454-2019-62-1-40-49
18. Koruba Z., Krzysztofik I. An algorithm for selecting optimal controls to determine the estimators of the coefficients of a mathematical model for the dynamics of a self-propelled anti-aircraft missile system. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics. 2013; 227(1):12-16. (In Eng.) doi: https://doi.org/10.1177/1464419312455967
19. Casar J., Farlik J. The Possibilities and Usage of Missile Path Mathematical Modelling for the Utilization in Future Autonomous Air Defense Systems Simulators. In: Mazal J., Fagiolini A., Vasik P. (eds.) Modelling and Simulation for Autonomous Systems. MESAS 2019. Lecture Notes in Computer Science. Vol. 11995. Springer, Cham; 2020. p. 253-261. (In Eng.) doi: https://doi.org/10.1007/978-3-030-43890-6_20
20. Guo B.-B., An T.-Y., Sun Y.-T. Research on Simulation Design of Air Force Campaign Process Deduction System. The Frontiers of Society, Science and Technology. 2019; 1(8):51-56. (In Eng.) doi: https://doi.org/10.25236/FSST.2019.010809
21. Cui Z., Kirkby J.L., Nguyen D. A general framework for time-changed Markov processes and applications. European Journal of Operational Research. 2019; 273(2):785-800. (In Eng.) doi: https://doi.org/10.1016/j.ejor.2018.08.033
22. Cui Z., Kirkby J.L., Nguyen D. Continuous-Time Markov Chain and Regime Switching Approximations with Applications to Options Pricing. In: Yin G., Zhang Q. (eds.) Modeling, Stochastic Control, Optimization, and Applications. The IMA Volumes in Mathematics and its Applications. Vol. 164. Springer, Cham; 2019. p. 115-146. (In Eng.) doi: https://doi.org/10.1007/978-3-030-25498-8_6
23. Qi W., Zong G., Zheng W. X. Adaptive Event-Triggered SMC for Stochastic Switching Systems With Semi-Markov Process and Application to Boost Converter Circuit Model. IEEE Transactions on Circuits and Systems I: Regular Papers. 2020; 68(2):786-796. (In Eng.) doi: https://doi.org/10.1109/TCSI.2020.3036847
24. Defourny B., Moazeni S. Implied Markov transition matrices under structural price models. Quantitative Finance. 2021; 21(11):1935-1954. (In Eng.) doi: https://doi.org/10.1080/14697688.2021.1921242
25. Hartich D., Godec A. Interlacing relaxation and first-passage phenomena in reversible discrete and continuous space Markovian dynamics. Journal of Statistical Mechanics: Theory and Experiment. 2019; 2019(2):024002. (In Eng.) doi: https://dx.doi.org/10.1088/1742-5468/aaf716

This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication policy of the journal is based on traditional ethical principles of the Russian scientific periodicals and is built in terms of ethical norms of editors and publishers work stated in Code of Conduct and Best Practice Guidelines for Journal Editors and Code of Conduct for Journal Publishers, developed by the Committee on Publication Ethics (COPE). In the course of publishing editorial board of the journal is led by international rules for copyright protection, statutory regulations of the Russian Federation as well as international standards of publishing.
Authors publishing articles in this journal agree to the following: They retain copyright and grant the journal right of first publication of the work, which is automatically licensed under the Creative Commons Attribution License (CC BY license). Users can use, reuse and build upon the material published in this journal provided that such uses are fully attributed.