Stability of the Lorentz System

Abstract

In this paper a variational method is proposed for obtaining the necessary (and sufficient) stability conditions for perturbed solutions of the system of Lorentz equations. This method allows us to establish the necessary conditions for Lyapunov stability. It is effective even in cases when the application of the classical Lyapunov method causes difficulties associated with the construction of the Lyapunov function or with inaccuracies of Taylor linearization, which is typical for dynamical systems of large dimension.
In some cases, this method can be used to find regions of phase variables in which the necessary stability conditions coincide with sufficient stability conditions (asymptotic stability) according to Lyapunov.
In these cases, the metric function itself, as shown in this paper, can play the role of the Lyapunov function to obtain sufficient stability conditions.

Author Biographies

Vasiliy Vasilevich Tikhomirov, Lomonosov Moscow State University

Associate Professor of the Department of General Mathematics, Faculty of Computational Mathematics and Cybernetics, Ph.D. (Phys.-Math.), Associate Professor

Rustam Ruslanovich Isaev, Lomonosov Moscow State University

student of the Faculty of Computational Mathematics and Cybernetics

Anna Vsevolodovna Maltseva, Lomonosov Moscow State University

Junior Researcher of the Department of Nonlinear Dynamic Systems and Control Processes, Faculty of Computational Mathematics and Cybernetics

Vladimir Vadimovich Nefedov, Lomonosov Moscow State University

Associate Professor of the Department of Automation for Scientific Research, Faculty of Computational Mathematics and Cybernetics, Ph.D. (Phys.-Math.), Associate Professor

References

1. Lorenz E.N. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences. 1963; 20:130-141. Available at: https://www.astro.puc.cl/~rparra/tools/PAPERS/lorenz1962.pdf (accessed 14.03.2021). (In Eng.)
2. Arnold V.I. Dopolnitel'nye glavy teorii obyknovennyh differencial'nyh uravnenij [Additional chapters of the theory of ordinary differential equations]. Moscow, Nauka; 1978. 304 p. (In Russ.)
3. Arnold V.I. Teorija katastrof [Catastrophe Theory]. Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., vol. 5. VINITI, Moscow; 1985. p. 5-218. (In Russ.)
4. Berge P., Pomeau Y., Vidal C. Order within Chaos. Wiley-VCH, 1987. 329 p. (In Eng.)
5. Bylov B.F., Vinograd R.E., Grobman D.M., Nemyckii V.V. Teorija pokazatelej Ljapunova i ee prilozhenija k voprosam ustojchivosti [Theory of Ljapunov exponents and its application to problems of stability]. Izdat. Nauka, Moscow; 1966. 576 p. (In Russ.)
6. Gershuni G.Z., Zhukhovitskii E.M. Konvektivnaja ustojchivost' neszhimaemoj zhidkosti [Convective Stability of Incompressible Fluids]. IPST; 1976. 336 p. (In Russ.)
7. Evstigneev N.M., Magnitskii N.A., Sidorov S.V. On the nature of turbulence in Rayleigh-Benard convection. Differential Equations. 2009; 45(6):909-912. (In Eng.) DOI: https://doi.org/10.1134/S0012266109060135
8. Evstigneev N.M., Magnitskii N.A. On possible scenarios of the transition to turbulence in Rayleigh-Bénard convection. Doklady Mathematics. 2010. 82(1):659-662. (In Eng.) DOI: https://doi.org/10.1134/S106456241004040X
9. Kaloshin D.A., Magnitskii N.A. A Complete Bifurcation Diagram of Nonlocal Bifurcations of Singular Points in the Lorenz System. Computational Mathematics and Modeling. 2011; 22(4):444-453. (In Eng.) DOI: https://doi.org/10.1007/s10598-011-9112-z
10. Magnitskii N.A. Teorija dinamicheskogo haosa [Theory of Dynamical Chaos]. URSS, Moscow; 2011. 320 p. (In Russ.)
11. Magnitskii N.A. Universal theory of dynamical chaos in nonlinear dissipative systems of differential equations. Communications in Nonlinear Science and Numerical Simulation. 2008; 13(2):416-433. (In Eng.) DOI: https://doi.org/10.1016/j.cnsns.2006.05.006
12. Samarsky A.A., Gilin A.V. Chislennye metody [Numerical Methods]. Izdat. Nauka, Moscow; 1989. 430 p. (In Russ.)
13. Smol'yakov E.R. An efficient method of stability analysis for highly nonlinear dynamic systems. Kibernetika i sistemnyj analiz. 2019; 55(4):15-23. (In Russ., abstract in Eng.)
14. Simo K., Shensine A. et al. Sovremennyie problemyi haosa i nelineynosti [Modern problems of chaos and nonlinearity]. ICS, Izhevsk; 2002. 304 p. (In Russ.)
15. Shil'nikov, L.P. Teorija bifurkacij v modeli Lorenca [Bifurcation theory and the Lorentz model]. In: Ed. by J. Marsden, M. McCraken. Bifurcation of the cycle generation and its applications. Mir, Moscow; 1980. p. 317-335 . (In Russ.)
16. Schuster H.G. Deterministic Chaos: An Introduction. 3rd Ed. Wiley-VCH; 1995. 320 p. (In Eng.)
17. Chetaev N.G. Ustojchivost' dvizhenija. Raboty po analiticheskoj mehanike [Stability of Motion. Works in Analytical Mechanics]. Izdat. AN SSSR, Moscow; 1962. 535 p. (In Russ.)
18. Chen X. Lorenz Equations Part I: Existence and Nonexistence of Homoclinic Orbits. SIAM Journal on Mathematical Analysis. 1996; 27(4):1057-1069. (In Eng.) DOI: https://doi.org/10.1137/S0036141094264414
19. Evstigneev N.M., Magnitskii N.A., Sidorov S.V. Nonlinear dynamics of laminar-turbulent transition in three dimensional Rayleigh-Benard convection. Communications in Nonlinear Science and Numerical Simulation. 2010; 15(10);2851-2859. (In Eng.) DOI: https://doi.org/10.1016/j.cnsns.2009.10.022
20. Magnitskii N.A., Sidorov S.V. New Methods for Chaotic Dynamics. World Scientific Publishing Co., Singapore; 2006. 384 p. (In Eng.)
21. Guckenheimer J., Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, New York, NY; 1983. 462 p. (In Eng.) DOI: https://doi.org/10.1007/978-1-4612-1140-2
22. Tikhomirov V.V., Isaev R.R. Primenenie variacionnogo metoda dlja issledovanija ustojchivosti sistemy Lotki – Val'tery (dlja 3 izmerenij) [Application of the variational method for studying stability of the 3D Lotka – Volterra system]. Proceedings of the International Conference on Modern Methods of Mathematical Physics and their Applications, vol. 2. Tashkent; 2020. p. 204-209. (In Russ.)
23. Shil'nikov A., Shil'nikov L., Turaev D. Normal forms and Lorenz attractors. International Journal of Bifurcation and Chaos. 1993; 03(05):1123-1139. (In Eng.) DOI: https://doi.org/10.1142/S0218127493000933
24. Sparrou C. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Applied Mathematical Sciences, vol. 41. Springer, New York, NY; 1982. 270 p. (In Eng.) DOI: https://doi.org/10.1007/978-1-4612-5767-7
25. Hirsch M.W., Smale S., Devaney R.L. Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, Elsevier; 2004. 417 p. (In Eng.)
26. Firsov A.N., Inovenkov I.N., Tikhomirov V.V., Nefedov V.V. Numerical Study of the Effect of Stochastic Disturbances on the Behavior of Solutions of Some Differential Equations. Sovremennye informacionnye tehnologii i IT-obrazovanie = Modern Information Technologies and IT-Education. 2021; 17(1):37-43. (In Eng.) DOI: https://doi.org/10.25559/SITITO.17.202101.730
27. Bliss G.A. Lectures on the calculus of variations. University of Chicago Press; 1947. 296 p. (In Eng.)
Published
2021-06-30
How to Cite
TIKHOMIROV, Vasiliy Vasilevich et al. Stability of the Lorentz System. Modern Information Technologies and IT-Education, [S.l.], v. 17, n. 2, p. 241-249, june 2021. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/739>. Date accessed: 09 oct. 2025. doi: https://doi.org/10.25559/SITITO.17.202102.241-249.
Section
Theoretical Questions of Computer Science, Computer Mathematics