Stability of the Lorentz System
Abstract
In this paper a variational method is proposed for obtaining the necessary (and sufficient) stability conditions for perturbed solutions of the system of Lorentz equations. This method allows us to establish the necessary conditions for Lyapunov stability. It is effective even in cases when the application of the classical Lyapunov method causes difficulties associated with the construction of the Lyapunov function or with inaccuracies of Taylor linearization, which is typical for dynamical systems of large dimension.
In some cases, this method can be used to find regions of phase variables in which the necessary stability conditions coincide with sufficient stability conditions (asymptotic stability) according to Lyapunov.
In these cases, the metric function itself, as shown in this paper, can play the role of the Lyapunov function to obtain sufficient stability conditions.
References
2. Arnold V.I. Dopolnitel'nye glavy teorii obyknovennyh differencial'nyh uravnenij [Additional chapters of the theory of ordinary differential equations]. Moscow, Nauka; 1978. 304 p. (In Russ.)
3. Arnold V.I. Teorija katastrof [Catastrophe Theory]. Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., vol. 5. VINITI, Moscow; 1985. p. 5-218. (In Russ.)
4. Berge P., Pomeau Y., Vidal C. Order within Chaos. Wiley-VCH, 1987. 329 p. (In Eng.)
5. Bylov B.F., Vinograd R.E., Grobman D.M., Nemyckii V.V. Teorija pokazatelej Ljapunova i ee prilozhenija k voprosam ustojchivosti [Theory of Ljapunov exponents and its application to problems of stability]. Izdat. Nauka, Moscow; 1966. 576 p. (In Russ.)
6. Gershuni G.Z., Zhukhovitskii E.M. Konvektivnaja ustojchivost' neszhimaemoj zhidkosti [Convective Stability of Incompressible Fluids]. IPST; 1976. 336 p. (In Russ.)
7. Evstigneev N.M., Magnitskii N.A., Sidorov S.V. On the nature of turbulence in Rayleigh-Benard convection. Differential Equations. 2009; 45(6):909-912. (In Eng.) DOI: https://doi.org/10.1134/S0012266109060135
8. Evstigneev N.M., Magnitskii N.A. On possible scenarios of the transition to turbulence in Rayleigh-Bénard convection. Doklady Mathematics. 2010. 82(1):659-662. (In Eng.) DOI: https://doi.org/10.1134/S106456241004040X
9. Kaloshin D.A., Magnitskii N.A. A Complete Bifurcation Diagram of Nonlocal Bifurcations of Singular Points in the Lorenz System. Computational Mathematics and Modeling. 2011; 22(4):444-453. (In Eng.) DOI: https://doi.org/10.1007/s10598-011-9112-z
10. Magnitskii N.A. Teorija dinamicheskogo haosa [Theory of Dynamical Chaos]. URSS, Moscow; 2011. 320 p. (In Russ.)
11. Magnitskii N.A. Universal theory of dynamical chaos in nonlinear dissipative systems of differential equations. Communications in Nonlinear Science and Numerical Simulation. 2008; 13(2):416-433. (In Eng.) DOI: https://doi.org/10.1016/j.cnsns.2006.05.006
12. Samarsky A.A., Gilin A.V. Chislennye metody [Numerical Methods]. Izdat. Nauka, Moscow; 1989. 430 p. (In Russ.)
13. Smol'yakov E.R. An efficient method of stability analysis for highly nonlinear dynamic systems. Kibernetika i sistemnyj analiz. 2019; 55(4):15-23. (In Russ., abstract in Eng.)
14. Simo K., Shensine A. et al. Sovremennyie problemyi haosa i nelineynosti [Modern problems of chaos and nonlinearity]. ICS, Izhevsk; 2002. 304 p. (In Russ.)
15. Shil'nikov, L.P. Teorija bifurkacij v modeli Lorenca [Bifurcation theory and the Lorentz model]. In: Ed. by J. Marsden, M. McCraken. Bifurcation of the cycle generation and its applications. Mir, Moscow; 1980. p. 317-335 . (In Russ.)
16. Schuster H.G. Deterministic Chaos: An Introduction. 3rd Ed. Wiley-VCH; 1995. 320 p. (In Eng.)
17. Chetaev N.G. Ustojchivost' dvizhenija. Raboty po analiticheskoj mehanike [Stability of Motion. Works in Analytical Mechanics]. Izdat. AN SSSR, Moscow; 1962. 535 p. (In Russ.)
18. Chen X. Lorenz Equations Part I: Existence and Nonexistence of Homoclinic Orbits. SIAM Journal on Mathematical Analysis. 1996; 27(4):1057-1069. (In Eng.) DOI: https://doi.org/10.1137/S0036141094264414
19. Evstigneev N.M., Magnitskii N.A., Sidorov S.V. Nonlinear dynamics of laminar-turbulent transition in three dimensional Rayleigh-Benard convection. Communications in Nonlinear Science and Numerical Simulation. 2010; 15(10);2851-2859. (In Eng.) DOI: https://doi.org/10.1016/j.cnsns.2009.10.022
20. Magnitskii N.A., Sidorov S.V. New Methods for Chaotic Dynamics. World Scientific Publishing Co., Singapore; 2006. 384 p. (In Eng.)
21. Guckenheimer J., Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, New York, NY; 1983. 462 p. (In Eng.) DOI: https://doi.org/10.1007/978-1-4612-1140-2
22. Tikhomirov V.V., Isaev R.R. Primenenie variacionnogo metoda dlja issledovanija ustojchivosti sistemy Lotki – Val'tery (dlja 3 izmerenij) [Application of the variational method for studying stability of the 3D Lotka – Volterra system]. Proceedings of the International Conference on Modern Methods of Mathematical Physics and their Applications, vol. 2. Tashkent; 2020. p. 204-209. (In Russ.)
23. Shil'nikov A., Shil'nikov L., Turaev D. Normal forms and Lorenz attractors. International Journal of Bifurcation and Chaos. 1993; 03(05):1123-1139. (In Eng.) DOI: https://doi.org/10.1142/S0218127493000933
24. Sparrou C. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Applied Mathematical Sciences, vol. 41. Springer, New York, NY; 1982. 270 p. (In Eng.) DOI: https://doi.org/10.1007/978-1-4612-5767-7
25. Hirsch M.W., Smale S., Devaney R.L. Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, Elsevier; 2004. 417 p. (In Eng.)
26. Firsov A.N., Inovenkov I.N., Tikhomirov V.V., Nefedov V.V. Numerical Study of the Effect of Stochastic Disturbances on the Behavior of Solutions of Some Differential Equations. Sovremennye informacionnye tehnologii i IT-obrazovanie = Modern Information Technologies and IT-Education. 2021; 17(1):37-43. (In Eng.) DOI: https://doi.org/10.25559/SITITO.17.202101.730
27. Bliss G.A. Lectures on the calculus of variations. University of Chicago Press; 1947. 296 p. (In Eng.)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication policy of the journal is based on traditional ethical principles of the Russian scientific periodicals and is built in terms of ethical norms of editors and publishers work stated in Code of Conduct and Best Practice Guidelines for Journal Editors and Code of Conduct for Journal Publishers, developed by the Committee on Publication Ethics (COPE). In the course of publishing editorial board of the journal is led by international rules for copyright protection, statutory regulations of the Russian Federation as well as international standards of publishing.
Authors publishing articles in this journal agree to the following: They retain copyright and grant the journal right of first publication of the work, which is automatically licensed under the Creative Commons Attribution License (CC BY license). Users can use, reuse and build upon the material published in this journal provided that such uses are fully attributed.