Geometrical Analysis in the Study of Body Oscillations of Complex Configuration in the Medium Flow

Abstract

The work is devoted to the construction and study of a mathematical model of self-oscillations of an aerodynamic pendulum in a medium flow. The model of quasi-static flow of the plate by the medium was adopted as a model of the impact of the medium on the body. According to this hypothesis, the aerodynamic forces acting on the body are applied at the center of pressure. In the problem under consideration, the center of pressure is movable relative to the plate. The equations of motion for the body in question are obtained. The transition to new dimensionless variables. The violation of uniqueness in determining the angle of attack is shown. A parametric analysis of ambiguity domains is carried out. All stationary points that are solutions of the equilibrium equations are found. It is shown that in the most characteristic position of equilibrium, corresponding to the state of rest, there are no ambiguity regions. The stability of the equilibrium position corresponding to the state of rest was studied, in which the Hurwitz criterion was implemented, and the stability region was depicted. It is shown that aerodynamic forces for bodies with some forms can contribute to the development of self-oscillations, and for others, attenuation. In the mathematical package MATLAB 18, a set of programs is written, which makes it possible to build areas of stability and to carry out numerical integration of the equations describing body oscillations in order to confirm the adequacy of the constructed model.

Author Biography

Dmitry Valeryevich Belyakov, Moscow Aviation Institute (National Research University)

Associate Professor of the Department of Computational Mathematics, Institute of Computer Mathematics and Information Technologies, Cand.Sci. (Eng.)

References

1. Samsonov V.A., Belyakov D.V. Geometrical analysis in the study of body oscillations of complex configuration in the medium flow. International Journal of Open Information Technologies. 2019; 7(9):31-38. Available at: https://www.elibrary.ru/item.asp?id=39529511 (accessed 23.04.2022). (In Russ., abstract in Eng.)
2. Belyakov D.V. The Problem of Studying the Self-Oscillations of an Aerodynamic Pendulum in the Flow of a Medium. Sovremennye informacionnye tehnologii i IT-obrazovanie = Modern Information Technologies and IT-Education. 2020; 16(2):449-459. (In Russ., abstract in Eng.) doi: https://doi.org/10.25559/SITITO.16.202002.449-459
3. Belyakov D.V., Samsonov V.A., Filippov V.V. Motion Investigation of Asymmetric Solid in Resistant Environment. Vestnik Moskovskogo jenergeticheskogo instituta = Vestnik MEI. Bulletin of Moscow Power Engineering Institute. 2006; (4):5-10. Available at: https://elibrary.ru/item.asp?id=9455853 (accessed 23.04.2022). (In Russ., abstract in Eng.)
4. Belyakov D.V. Development and Features of Mathematical Model of Movement Asymmetrical Autorotating Bodies in Quasi-static to Environment. Mehatronika, Avtomatizacija, Upravlenie = Мechatronics, Automation, Control. 2007; (11):20-24. Available at: https://elibrary.ru/item.asp?id=9609383 (accessed 23.04.2022). (In Russ., abstract in Eng.)
5. Samsonov V.A., Dosaev M.Z., Selyutskiy Yu.D. Methods of Qualitative Analysis in the Problem of Rigid Body Motion in Medium. International Journal of Bifurcation and Chaos. 2011; 21(10):2955-2961. (In Eng.) doi: https://doi.org/10.1142/S021812741103026X
6. Strickland J.H., Webster B.T., Nguyen T. A Vortex Model of the Darrieus Turbine: An Analytical and Experimental Study. Journal of Fluids Engineering. 1979; 101(4):500-505. (In Eng.) doi: http://doi.org/10.1115/1.3449018
7. Paraschivoiu I., Delclaux F. Double multiple streamtube model with recent improvements (for predicting aerodynamic loads and performance of Darrieus vertical axis wind turbines). Journal of Energy. 1983; 7(3):250. (In Eng.) doi: http://doi.org/10.2514/3.48077
8. Klimina L.A. Rotational modes of motion for an aerodynamic pendulum with a vertical rotation axis. Moscow University Mechanics Bulletin. 2009; 64(5):126. (In Eng.) doi: https://doi.org/10.3103/S0027133009050069
9. Holub A.P., Selyutskiy Yu.D. On Influence of Elastic Mounting on Oscillations of a Double Aerodynamic Pendulum. Proceedings of Moscow Institute of Physics and Technology. 2017; 9(3):8-13. Available at: https://www.elibrary.ru/item.asp?id=32736027 (accessed 23.04.2022). (In Russ., abstract in Eng.)
10. Moskatov G.K., Chepelev A.A. Reliability and safety of feedback flight control systems. Scientific Bulletin of the military-industrial complex of Russia. 2013; (2):41-63. Available at: https://elibrary.ru/item.asp?id=24276464 (accessed 23.04.2022). (In Russ., abstract in Eng.)
11. Alqurashi F., Mohamed M.H. Aerodynamic Forces Affecting the H-Rotor Darrieus Wind Turbine. Modelling and Simulation in Engineering. 2020; 2020:1368369. (In Eng.) doi: http://doi.org/10.1155/2020/1368369
12. Parashivoiu I. Aerodynamic loads and rotor performance for the Darrieus wind turbines. Journal of Energy. 1982; 6:406-412. (In Eng.) doi: http://doi.org/10.2514/6.1981-2582
13. Dosaev M.Z., Samsonov V.A., Seliutski Yu.D. On the Dynamics of a Small-Scale Wind Power Generator. Doklady Physics. 2007; 52(9):493-495. (In Eng.) doi: http://doi.org/10.1134/S1028335807090091
14. Samsonov V.A., Selyutskii Yu.D. Comparison of Different Notation for Equations of Motion of a Body in a Medium Flow. Mechanics of Solids. 2008; 43(1):146-152. (In Eng.) doi: http://doi.org/10.1007/s11964-008-1015-x
15. Samsonov V.A., Selyutskii Yu.D. About Vibrations of a Plate in a Flow of a Resisting Medium. Mechanics of Solids. 2004; (4):24. Available at: https://elibrary.ru/item.asp?id=17636289 (accessed 23.04.2022). (In Russ., abstract in Eng.)
16. Privalov V.A., Samsonov V.A. Ob ustojchivosti dvizhenija tela, avtorotirujushhego v potoke sredy [On the Stability of Motion of a Body Autorotating in the Flow of a Medium]. Izv. USSR Acad. Sci. MTT. 1990; (2):32-38. (In Russ.)
17. Zhang J.Z., Liu Y., Sun X., Chen J.H., Wang L. Applications and Developments of Aeroelasticity of Flexible Structure in Flow Controls. Advances in Mechanics. 2018; 48(1):299-319. (In Eng.) doi: http://doi.org/10.6052/1000-0992-16-034
18. Klimina L.A., Lokshin B.Ya. On a constructive method of search for rotary and oscillatory modes in autonomous dynamical systems. Russian Journal of Nonlinear Dynamics. 2017; 13(1):25-40. (In Russ., abstract in Eng.) doi: http://doi.org/10.20537/nd1701003
19. Klimina L.A. Method for Generating Asynchronous Self-Sustained Oscillations of a Mechanical System with Two Degrees of Freedom. Mechanics of Solids. 2021; 56(7):1167-1180. (In Eng.) doi: https://doi.org/10.3103/S0025654421070141
20. Lozovsky I.V. Analysis of a mathematical model of an autorotation main rotor. Polyot = Flight. 2021; (6):25-27. Available at: https://www.elibrary.ru/item.asp?id=46201456 (accessed 23.04.2022). (In Russ., abstract in Eng.)
21. Yao J., Yeo K.S. Free hovering of hummingbird hawkmoth and effects of wing mass and wing elevation. Computers & Fluids. 2019; 186; 99-127. (In Eng.) doi: https://doi.org/10.1016/j.compfluid.2019.04.007
22. Hesamian G., Akbari M.G. A fuzzy additive regression model with exact predictors and fuzzy responses. Applied Soft Computing. 2020; 95:106507. (In Eng.) doi: https://doi.org/10.1016/j.asoc.2020.106507
23. Radionov A.A., Gasiyarov V.R. Proceedings of the 7th International Conference on Industrial Engineering (ICIE 2021). Lecture Notes in Mechanical Engineering. Vol. II. Springer Cham; 2022. 849 p. (In Eng.) doi: https://doi.org/10.1007/978-3-030-85230-6
24. Li Q., Hou P. Three-dimensional quasi-static general solution for isotropic thermoelastic medium with applications. Case Studies in Thermal Engineering. 2021; 25:100897. (In Eng.) doi: https://doi.org/10.1016/j.csite.2021.100897
25. Liu X., Xu J., Liu Y. Trajectory tracking and point stability of three-axis aero-dynamic pendulum with MPC strategy in disturbance environment. Assembly Automation. 2021; 41(3):358-368. (In Eng.) doi: https://doi.org/10.1108/AA-11-2020-0181
Published
2022-07-20
How to Cite
BELYAKOV, Dmitry Valeryevich. Geometrical Analysis in the Study of Body Oscillations of Complex Configuration in the Medium Flow. Modern Information Technologies and IT-Education, [S.l.], v. 18, n. 2, p. 404-411, july 2022. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/864>. Date accessed: 16 sep. 2025. doi: https://doi.org/10.25559/SITITO.18.202202.404-411.
Section
Scientific software in education and science

Most read articles by the same author(s)