MATHEMATICAL MODEL OF SMALL BODY VIBRATIONS IN THE STREAM OF THE ENVIRONMENT
Abstract
This article explores the mathematical model of a body that performs self-oscillations in a flow of a quasistatic medium under the influence of aerodynamic forces. The equations of motion of the body under consideration and the kinematic relations connecting the phase coordinates with the angle of attack are derived. The equilibrium equations were solved and it was shown that the only equilibrium position is the state of rest. The equations of the first approximation are obtained and the stability of the state of rest is studied using the Hurwitz criterion. It is shown that as a result of interaction with the medium, the body in question can oscillate with increasing amplitude (flutter) in the medium flow. Areas of stability are constructed on the plane of geometric parameters: spring stiffness and rod length. In the mathematical package MATLAB, a set of programs has been proposed that allow for numerical studies that implement the numerical integration of the equations describing the vibrations of a plate with a fixed center of pressure. Such a model is possible provided that the length of the rod is much greater than the width of the plate. When the program is started, the stability region is constructed and the geometrical parameters are entered on it: the spring stiffness and the rod length. Next, a vector of initial conditions is introduced. When searching for a numerical solution, the ode45 procedure is used, which implements fourth and fifth order Runge – Kutta methods with a variable step. When searching for a numerical solution, experimental aerodynamic functions are interpolated by a cubic spline. The solution obtained by integrating is depicted on the graph as Lissajous figures. Thus, a mathematical model of plate oscillations was developed, a parametric stability analysis was carried out, with the help of a complex of programs based on a specialized computer mathematics system, it is possible to confirm the obtained analytical results.
References
[2] Belyakov D.V. Development and Features of Mathematical Model of Movement Asymmetrical Autorotating Bodies in Quasi-static to Environment. Mekhatronika, Avtomatizatsiya, Upravlenie. 2007; 11:20-24. Available at: https://elibrary.ru/item.asp?id=9609383 (accessed 16.11.2018). (In Russ.)
[3] Samsonov V.A., Belyakov D.V., Cheburakhin I.F. Vertical reduction of a heavy symmetric autorotising body in a resisting medium. Nauchnye Trudy MATI. 2005; 9(81):145-150. (In Russ.)
[4] Samsonov V.A., Belyakov D.V. Mathematical modeling of the movement of a symmetric autorotising body, promoted to a high angular velocity. Nauchnye Trudy MATI. 2006; 10(82):196-200. (In Russ.)
[5] Belyakov D.V., Samsonov V.A. Assessment of the possibilities of a new type of object rotating the airborne one. Proceedings of the XXVI Academic Readings on Astronautics. A.K. Medvedeva (ed). М., 2002. p. 100. (In Russ.)
[6] Belyakov D.V. Mathematical modeling of the motion of a rotating object descending in the air. Proceedings of the Fifth International Aerospace Congress IAC-06. Dedicated to the 20th anniversary of the launch of the MIR space station. M., 2006, p. 62-63. (In Russ.)
[7] Belyakov D.V. Mathematical model of an asymmetric autorotising body in a resisting environment. Proceedings of the International Youth Scientific XXXIII Gagarin Science Conference. M., 2007, p. 27-28. (In Russ.)
[8] McCroskey W.J., Pucci S.L. Viscous-Inviscid Interaction on Oscillating Airfoils in Subsonic Flow. A.I.A.A. Journal. 1982; 20(2):167-174. (In Eng.) DOI: 10.2514/3.51063
[9] Eroshin V.A. Heavy disk entering water at high velocity and a small angle to the free surface. Fluid Dynamics. 1995; 30(6):810-813. (In Eng.) DOI: 10.1007/BF02078193
[10] Lokshin B.Ya., Privalov V.A., Samsonov V.A. Introduction to the problem of the motion of a point and a body in a resisting medium. M.: MSU Press, 1986. (In Russ.)
[11] Parshin D.E. Qualitative analysis in the problem of the motion of an aerodynamic pendulum: dis. ... Ph.D. (Phys.-Math.). M.: MSU, 1993. (In Russ.)
[12] Selyutskiy Y.D., Samsonov V.A., Andronov P.R. On oscillations of aerodynamic pendulum. International Journal of Structural Stability and Dynamics. 2013; 13(7):1340010. (In Eng.) DOI: 10.1142/S0219455413400105
[13] Tabachnikov V.G. Stationary characteristics of wings at low speeds in the entire range of angles of attack. Trudy TsAGI. 1974; 1621:79-93. (In Russ.)
[14] Strickland J.H., Webster B.T., Nguyen Т. A Vortex Model of the Darrieus Turbine: An Analytical and Experimental Study. Journal of Fluids Engineering. 1979; 101(4):500-505. (In Eng.) DOI: 10.1115/1.3449018
[15] Karlikov, V.P., Khomyakov, A.N. & Sholomovich, G.I. Modeling of developed cavitation flows in water tunnels. Fluid Dynamics. 1987; 22(2):228-235. (In Eng.) DOI: 10.1007/BF01052253
[16] Paraschivoiu I., Delclauxе F. Double Multiple Stremeamtube model with Recent Improvements. Journal of Energy. 1983; 7(3):250-255. (In Eng.) DOI: 10.2514/3.48077
[17] Vittecoq P., Laneville A. The Aerodynamic Forses for a Darrieus Rotor with Straight Blades: Wind Tunnel Measurement. Journal of Wind Engineering and Industrial Aerodynamics. 1983; 15(1-3):381-388. (In Eng.) DOI: 10.1016/0167-6105(83)90207-6
[18] Parashivoiu I. Aerodynamics Loads and Performance of the Darrieus Rotor. Journal of Energy. 1982; 6(6):406-412. (In Eng.) DOI: 10.2514/3.62621
[19] Zhuravlev V.F., Klimov D.M. Applied Methods in Theory of Oscillations. Nauka, Moscow, 1988. (In Russ.)
[20] Malkin I.G. Theory of the Stability of Motion. Nauka, Moscow, 1966. (In Russ.)
[21] Okunev J.M. et al. Dynamics of rotating body interacting with a resistant medium. Informacionnyj Byulleten RFBR. 1997; 5. Available at: https://elibrary.ru/item.asp?id=230782 (accessed 16.11.2018). (In Russ.)
[22] Lokshin В.Ya., Samsonov V.A. On heuristic model of aerodynamical pendulum. Fundanientalnaya i prikladnaya matematika = Fundamental and Applied Mathematics. 1998; vol. 4(3):1047-1061. Available at: URL: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=fpm&paperid=341&option_lang=rus (accessed 16.11.2018). (In Russ.)
[23] Eroshin V.A., Zyraynov D.V., Samsonov V.A. Two-Beam System for Recording the Parameters of Motion of a Body Entering Water. Fluid Dynamics. 2001; 36(2):178-186. (In Eng.) DOI: 10.1023/A:1019221714967
[24] Privalov V.A., Samsonov V.A. On stability of motion of a body auto-rotating in medium flow. Izvestiya RAN, Mekhanika Tverdogo Tela. 1990; 2:32-38. (In Russ.)
[25] Belyakov D.V. Mathematical modeling of the motion axisymmetric autorotating bodies in quasistatic to ambience. International Journal of Open Information Technologies. 2015; 3(3):7-16. Available at: https://elibrary.ru/item.asp?id=22993754 (accessed 16.11.2018). (In Russ.)
[26] Belyakov D.V. The problem of self-oscillations of the plate in the flow of the medium. Sovremennye informacionnye tehnologii i IT-obrazovanie = Modern Information Technologies and IT-Education. 2015; 11(2):552-555. Available at: https://elibrary.ru/item.asp?id=26167543 (accessed 16.11.2018). (In Russ.)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication policy of the journal is based on traditional ethical principles of the Russian scientific periodicals and is built in terms of ethical norms of editors and publishers work stated in Code of Conduct and Best Practice Guidelines for Journal Editors and Code of Conduct for Journal Publishers, developed by the Committee on Publication Ethics (COPE). In the course of publishing editorial board of the journal is led by international rules for copyright protection, statutory regulations of the Russian Federation as well as international standards of publishing.
Authors publishing articles in this journal agree to the following: They retain copyright and grant the journal right of first publication of the work, which is automatically licensed under the Creative Commons Attribution License (CC BY license). Users can use, reuse and build upon the material published in this journal provided that such uses are fully attributed.