Cybersecurity Digital Skills Model 2020

Abstract

The rapid pace of the comprehensive digitalization of society leads to increasing technological complexity and scale of cyber threats, both in the private and public sectors of the economy. Therefore, the training of highly qualified cybersecurity personnel is becoming a priority task for the education system and personnel management, and there is also a need for continuous improvement of training programs for professionals in the field of cybersecurity.
The article presents the results of the development of a digital skills model for the field of cybersecurity (information security), the actual description of the architecture of the model, which determines the composition of categories and domains of skills in demand for professional cybersecurity personnel, as well as the composition of skills for the main profile categories of the model. The skills model was developed in order to determine the requirements for curricula for the training of professional personnel, as well as to develop on its basis a body of knowledge on cybersecurity and a new generation curriculum - the most important methodological tools of the education system.

Author Biographies

Vladimir Alexandrovich Sukhomlin, Lomonosov Moscow State University

Head of the Open Information Technologies Lab, Faculty of Computational Mathematics and Cybernetics, Dr.Sci. (Technology), Professor, President of the Fund “League Internet-Media”

Olga Sergeevna Belyakova, Lomonosov Moscow State University

student of the Department of Information Security, Faculty of Computational Mathematics and Cybernetics

Anna Sergeevna Klimina, Lomonosov Moscow State University

student of the Department of Information Security, Faculty of Computational Mathematics and Cybernetics

Marina Sergeevna Polyanskaya, Lomonosov Moscow State University

Master's student, Software Engineer of the Open Information Technologies Lab, Faculty of Computational Mathematics and Cybernetics

Alexey Aleksandrovich Rusanov, PJSC "Sberbank of Russia"

Manager of the Cybersecurity Academy

References

[1] Joint Task Force on Cybersecurity Education. Cybersecurity Curricula 2017: Curriculum Guidelines for Post-Secondary Degree Programs in Cybersecurity. Association for Computing Machinery, New York, NY, USA; 2018. (In Eng.) DOI: https://doi.org/10.1145/3184594
[2] Sukhomlin V., Zubareva E. Analytical Review of the Current Curriculum Standards in Information Technologies. In: Sukhomlin V., Zubareva E. (ed.) Modern Information Technology and IT Education. SITITO 2018. Communications in Computer and Information Science. 2020; 1201:3-41. Springer, Cham. (In Eng.) DOI: https://doi.org/10.1007/978-3-030-46895-8_1
[3] Cyber2yr2020 Task Group. Cybersecurity Curricular Guidance for Associate-Degree Programs. Association for Computing Machinery, New York, NY, USA; 2020. (In Eng.) DOI: https://doi.org/10.1145/3381686
[4] Joint Task Force on Computing Curricula, Association for Computing Machinery (ACM) and IEEE Computer Society. Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Science. Association for Computing Machinery, New York, NY, USA; 2013. (In Eng.) DOI: https://doi.org/10.1145/2534860
[5] Nai Fovino I., Neisse R., Hernandez Ramos J.L., Polemi N., Ruzzante G.-L., Figwer M., Lazari A. A Proposal for a European Cybersecurity Taxonomy, EUR 29868 EN. Publications Office of the European Union, Luxembourg; 2019. (In Eng.) DOI: https://doi.org/10.2760/106002
[6] Ackerman P.L. Individual differences and skill acquisition. In: Ackerman P.L., Sternberg R.J., Glaser R. (ed.) A series of books in psychology. Learning and individual differences: Advances in theory and research. W H Freeman/Times Books/ Henry Holt & Co; 1989. p. 165-217. (In Eng.)
[7] Conte S.D., Hamblen J.W., Kehl W.B., Navarro S.O., Rheinboldt W.C., Young D.M., Atchinson W.F. An undergraduate program in computer science - preliminary recommendations. Communications of the ACM. 1965; 8(9):543-552. (In Eng.) DOI: https://doi.org/10.1145/365559.366069
[8] Atchison W.F., Conte S.D., Hamblen J.W., Hull T.E., Keenan T.A., Kehl W.B., McCluskey E.J., Navarro S.O., Rheinboldt W.C., Schweppe E.J., Viavant W., Young D.M. Curriculum 68: Recommendations for academic programs in computer science: a report of the ACM curriculum committee on computer science. Communications of the ACM. 1968; 11(3):151-197. (In Eng.) DOI: https://doi.org/10.1145/362929.362976
[9] Austing R.H., Barnes B.H., Bonnette D.T., Engel G.L., Stokes G. Curriculum '78: recommendations for the undergraduate program in computer science - a report of the ACM curriculum committee on computer science. Communications of the ACM. 1979; 22(3):147-166. (In Eng.) DOI: https://doi.org/10.1145/359080.359083
[10] Tucker A.B. Computing Curricula 1991. Communications of the ACM. 1991; 34(6):68-84. (In Eng.) DOI: https://doi.org/10.1145/103701.103710
[11] CORPORATE The Joint Task Force on Computing Curricula. Computing curricula 2001. Journal on Educational Resources in Computing. 2001; 1(3es):1-es. (In Eng.) DOI: https://doi.org/10.1145/384274.384275
[12] CORPORATE The Joint Task Force on Computing Curricula. Computing Curricula 2005. ACM and IEEE; 2005. (In Eng.)
[13] Comer D.E., Gries D., Mulder M.C., Tucker A., Turner A.J., Young P.R., Denning P.J. Computing as a discipline. Communications of the ACM. 1989; 32(1):9-23. (In Eng.) DOI: https://doi.org/10.1145/63238.63239
[14] Blair J.R.S., Chewar C.M., Raj R.K., Sobiesk E. Infusing Principles and Practices for Secure Computing Throughout an Undergraduate Computer Science Curriculum. In: Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE '20). Association for Computing Machinery, New York, NY, USA; 2020. p. 82-88. (In Eng.) DOI: https://doi.org/10.1145/3341525.3387426
[15] Topi H., Karsten H., Brown S.A., Carvalho J.A., Donnellan B., Shen J., Tan B.C.Y., Thouin M.F. MSIS 2016: Global Competency Model for Graduate Degree Programs in Information Systems. Technical Report. Association for Computing Machinery, New York, NY, USA; 2017. (In Eng.) DOI: https://doi.org/10.1145/3129538
[16] Leidig P.M., Cassel L. ACM Taskforce Efforts on Computing Competencies for Undergraduate Data Science Curricula. In: Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE '20). Association for Computing Machinery, New York, NY, USA; 2020. p. 519-520. (In Eng.) DOI: https://doi.org/10.1145/3341525.3393962
[17] Bloom B.S., Krathwohl D.R. Taxonomy of Educational Objectives: The Classification of Educational Goals. Handbook I: Cognitive Domain. By a Committee of College and University Examiners. New York, NY; Longmans, Green, 1956. (In Eng.)
[18] Moore J.W. The Road Map to Software Engineering: A Standards-Based Guide, 1st ed. Wiley-IEEE Computer Society Press; 2006. (In Eng.)
[19] Friesen N., Roberts A., Fisher S. CanCore: Metadata for Learning Objects. Canadian Journal of Learning and Technology. 2002; 28(3). (In Eng.) DOI: https://doi.org/10.21432/T2930T
[20] Verbert K., Duval E. ALOCOM: a generic content model for learning objects. International Journal on Digital Libraries. 2008; 9(1):41-63. (In Eng.) DOI: https://doi.org/10.1007/s00799-008-0039-8
[21] Peoples B.E. Innovative e-Learning: information technology and standards, a current and future perspective. Journal of East China Normal University (Natural Sciences). 2012; (2):1-12. (In Eng.)
[22] Parrish A., Impagliazzo J., Raj R.K., Santos H., Asghar M.R., Jøsang A., Pereira T., Sá V.J., Stavrou E. Global perspectives on cybersecurity education. In: Proceedings of the 23rd Annual ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE 2018). Association for Computing Machinery, New York, NY, USA; 2018. p. 340-341. (In Eng.) DOI: https://doi.org/10.1145/3197091.3205840
[23] Hawthorne E.K. Multifarious initiatives in cybersecurity education. ACM Inroads. 2013; 4(3):46-47. (In Eng.) DOI: https://doi.org/10.1145/2505990.2505999
[24] Cabaj K., Domingos D., Kotulski Z., Respício A. Cybersecurity education: Evolution of the discipline and analysis of master programs. Computers & Security. 2018; 75:24-35. (In Eng.) DOI: https://doi.org/10.1016/j.cose.2018.01.015
[25] Švábenský V., Čeleda P., Vykopal J., Brišáková S. Cybersecurity knowledge and skills taught in capture the flag challenges. Computers & Security. 2021; 102:102154. (In Eng.) DOI: https://doi.org/10.1016/j.cose.2020.102154
[26] John S.N., Noma-Osaghae E., Oajide F., Okokpujie K. Cybersecurity Education: The Skills Gap, Hurdle! In: Daimi K., Francia III G. (ed.) Innovations in Cybersecurity Education. Springer, Cham; 2020. p. 361-376. (In Eng.) DOI: https://doi.org/10.1007/978-3-030-50244-7_18
[27] Hodson C. Cybersecurity Skills. In: Jajodia S., Samarati P., Yung M. (ed.) Encyclopedia of Cryptography, Security and Privacy. Springer, Berlin, Heidelberg; 2020. (In Eng.) DOI: https://doi.org/10.1007/978-3-642-27739-9_1577-1
[28] Wang P., Sbeit R. A Comprehensive Mentoring Model for Cybersecurity Education. In: Latifi S. (ed.) 17th International Conference on Information Technology - New Generations (ITNG 2020). Advances in Intelligent Systems and Computing. 2020; 1134:17-23. Springer, Cham. (In Eng.) DOI: https://doi.org/10.1007/978-3-030-43020-7_3
[29] Ghernaouti S., Wanner B. Research and Education as Key Success Factors for Developing a Cybersecurity Culture. In: Bartsch M., Frey S. (ed.) Cybersecurity Best Practices. Springer Vieweg, Wiesbaden; 2018. p. 539-552. (In Eng.) DOI: https://doi.org/10.1007/978-3-658-21655-9_38
[30] Read H., Sutherland I., Xynos K., Drange T., Sundt E. The Impact of Changing Technology on International Cybersecurity Curricula. In: Tryfonas T. (ed.) Human Aspects of Information Security, Privacy and Trust. HAS 2017. Lecture Notes in Computer Science. 2017; 10292:518-528. Springer, Cham. (In Eng.) DOI: https://doi.org/10.1007/978-3-319-58460-7_36
Published
2020-11-30
How to Cite
SUKHOMLIN, Vladimir Alexandrovich et al. Cybersecurity Digital Skills Model 2020. Modern Information Technologies and IT-Education, [S.l.], v. 16, n. 3, p. 695-710, nov. 2020. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/684>. Date accessed: 21 aug. 2025. doi: https://doi.org/10.25559/SITITO.16.202003.695-710.
Section
IT education: methodology, methodological support

Most read articles by the same author(s)

1 2 > >>