Теория полисортных графов знаний-обучения
Аннотация
Стремительные темпы развития цифровой экономики ставят новые вызовы перед системами образования, делая сверх актуальной задачу развертывания в сжатые сроки новых технологий и процессов, обеспечивающих своевременную подготовку востребованных экономикой цифровых навыков. Это в свою очередь обусловливает необходимость поиска новых эффективных образовательных технологий и решений.
В статье рассматриваются теоретические основы аппарата специального вида графов, состоящих из вершин и направленных ребер нескольких сортов и называемых полисортными. Такой аппарат предназначен для создания на его основе инструментария системы развития цифровых навыков, способствующего повышению эффективности разработки и реализации образовательных процессов. Достоинством предлагаемого инструментария является возможность его использования для разработки, описания, конфигурирования образовательного контента, а также для управления реализацией персонализированных образовательных процессов. В статье описывается алгебра полисортных графов, основные операции над такими графами, приведены примеры использования этого аппарата.
Литература
[2] Sukhomlin V.A., Zubareva E.V., Namiot D.E., Yakushin A.V. Sistema razvitija cifrovyh navykov VMK MGU & Bazal't SPO. Metodika klassifikacii i opisanija trebovanij k sotrudnikam i soderzhaniju obrazovatel'nyh programm v sfere informacionnyh tehnologij [Digital Skills Development System]. MAKS Press: Basealt Publ., Moscow; 2020. (In Russ.)
[3] Popov E.V., Fridman G.F. Algorithmicheskie osnovy intellektualnikh robotov i iskusstvennogo intellekta [Algorithmic Basics of Intelligent Robots and Artificial Intelligence]. Nauka Publ., Moscow; 1976. (In Russ.)
[4] Pospelov D.A. Logiko-lingvisticheskie modeli v sistemakh upravleniya [Logical-linguistic models in control systems]. Energoizdat Publ., Moscow; 1981. (In Russ.)
[5] Ceruzzi P.E. A History of Modern Computing. Second Edition. MIT Press, Cambridge, MA, USA; 2003. (In Eng.)
[6] Gurin V.S., Kostrov E.V., Gavrilenko Yu.Yu., Saada D.F., Ilyushin E.A., Chizhov I.V. Knowledge Graph Essentials and Key Technologies. Sovremennye informacionnye tehnologii i IT-obrazovanie = Modern Information Technologies and IT-Education. 2019; 15(4);932-944. (In Eng.) DOI: https://doi.org/10.25559/SITITO.15.201904.932-944
[7] Harmelen F., Lifschitz V., Porter B. Handbook of Knowledge Representation. 1st Edition, vol. 1. Elsevier Science; 2007. (In Eng.)
[8] Piletski I.I., Batura M.P., Volarava N.A. System for Complex Analysis of Data from Internet Sources. In: Bogush V.A. (ed.) Proceedings of the 7th International Conference on BIG DATA and Advanced Analytics. Bestprint, Minsk; 2021. p. 198-209. Available at: https://libeldoc.bsuir.by/handle/123456789/43904 (accessed 14.09.2020). (In Russ., abstract in Eng.)
[9] Harary F. Graph Theory. Addison-Wesley Publishing Company, Boston; 1969. (In Eng.)
[10] Sukhomlin V.A. Algoritmicheskaja sistema dlja opisanija processov transljacii [Algorithmic System for Describing Translation Processes]. Programmirovanie = Programming and Computer Software. 1975; (2):77-83. (In Russ.)
[11] Lightfoot J.M. A Graph-Theoretic Approach to Improved Curriculum Structure and Assessment Placement. Communications of the IIMA. 2010; 10(2):5. Available at: http://scholarworks.lib.csusb.edu/ciima/vol10/iss2/5 (accessed 14.09.2020). (In Eng.)
[12] Joint Task Force on Cybersecurity Education. Cybersecurity Curricula 2017: Curriculum Guidelines for Post-Secondary Degree Programs in Cybersecurity. Association for Computing Machinery, New York, NY, USA; 2018. (In Eng.) DOI: https://doi.org/10.1145/3184594
[13] Li Z., Liu H., Zhang Z., Liu T. Shu J. Recalibration convolutional networks for learning interaction knowledge graph embedding. Neurocomputing. 2021; 427:118-130. (In Eng.) DOI: https://doi.org/10.1016/j.neucom.2020.07.137
[14] Wang H., Zhang F., Wang J., Zhao M., Li W., Xie X., Guo M. Exploring High-Order User Preference on the Knowledge Graph for Recommender Systems. ACM Transactions on Information Systems. 2019; 37(3):32. (In Eng.) DOI: https://doi.org/10.1145/3312738
[15] Wang Q., Mao Z., Wang B., Guo L. Knowledge Graph Embedding: A Survey of Approaches and Applications. IEEE Transactions on Knowledge and Data Engineering. 2017; 29(12):2724-2743. (In Eng.) DOI: https://doi.org/10.1109/TKDE.2017.2754499
[16] Zhao Y., Zhang A., Feng H., Li Q., Gallinari P., Ren F. Knowledge graph entity typing via learning connecting embeddings. Knowledge-Based Systems. 2018; 196:105808. (In Eng.) DOI: https://doi.org/10.1016/j.knosys.2020.105808
[17] Le N.-T., Vo B., Nguyen L.B.Q., Fujita H., Le B. Mining weighted subgraphs in a single large graph. Information Sciences. 2020; 514:149-165. (In Eng.) DOI: https://doi.org/10.1016/j.ins.2019.12.010
[18] Suchanek F.M., Kasneci G., Weikum G. Yago: a core of semantic knowledge. In: Proceedings of the 16th international conference on World Wide Web (WWW '07). Association for Computing Machinery, New York, NY, USA; 2007. p. 697-706. (In Eng.) DOI: https://doi.org/10.1145/1242572.1242667
[19] Steinmetz N., Sack H. Semantic Multimedia Information Retrieval Based on Contextual Descriptions. In: Cimiano P., Corcho O., Presutti V., Hollink L., Rudolph S. (ed.) The Semantic Web: Semantics and Big Data. ESWC 2013. Lecture Notes in Computer Science. 2013; 7882:382-396. Springer, Berlin, Heidelberg. (In Eng.) DOI: https://doi.org/10.1007/978-3-642-38288-8_26
[20] Zhang M., Geng G., Zeng S., Jia H. Knowledge Graph Completion for the Chinese Text of Cultural Relics Based on Bidirectional Encoder Representations from Transformers with Entity-Type Information. Entropy. 2020; 22(10):1168. (In Eng.) DOI: https://doi.org/10.3390/e22101168
[21] Bhatt Ah., Zhao J., Sheth A., Shalin V. Grafy znanij kak sredstvo uluchshenija iskusstvennogo intellekta [Knowledge graphs as a means of improving artificial intelligence]. Open Systems.DBMS. 2020; (03):24-26. Available at: https://elibrary.ru/item.asp?id=43925226 (accessed 14.09.2020). (In Russ.)
[22] Pommellet T., Lécué F. Feeding Machine Learning with Knowledge Graphs for Explainable Object Detection? CEUR Workshop Proceedings. 2019; 2456:277-280. Available at: http://ceur-ws.org/Vol-2456/paper72.pdf (accessed 14.09.2020). (In Eng.)
[23] Berrendorf M., Faerman E., Melnychuk V., Tresp V., Seidl T. Knowledge Graph Entity Alignment with Graph Convolutional Networks: Lessons Learned. In: Jose J. et al. (ed.) Advances in Information Retrieval. ECIR 2020. Lecture Notes in Computer Science. 2020; 12036:3-11. Springer, Cham. (In Eng.) DOI: https://doi.org/10.1007/978-3-030-45442-5_1
[24] St-Hilaire F. et al. A Comparative Study of Learning Outcomes for Online Learning Platforms. In: Roll I., McNamara D., Sosnovsky S., Luckin R., Dimitrova V. (ed.) Artificial Intelligence in Education. AIED 2021. Lecture Notes in Computer Science. 2021; 12749:331-337. Springer, Cham. (In Eng.) DOI: https://doi.org/10.1007/978-3-030-78270-2_59
[25] Giabbanelli P.J., Tawfik A.A., Gupta V.K. Learning Analytics to Support Teachers’ Assessment of Problem Solving: A Novel Application for Machine Learning and Graph Algorithms. In: Ifenthaler D., Mah D.K., Yau J.K. (ed.) Utilizing Learning Analytics to Support Study Success. Springer, Cham; 2019. p. 175-199. (In Eng.) DOI: https://doi.org/10.1007/978-3-319-64792-0_11
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Редакционная политика журнала основывается на традиционных этических принципах российской научной периодики и строится с учетом этических норм работы редакторов и издателей, закрепленных в Кодексе поведения и руководящих принципах наилучшей практики для редактора журнала (Code of Conduct and Best Practice Guidelines for Journal Editors) и Кодексе поведения для издателя журнала (Code of Conduct for Journal Publishers), разработанных Комитетом по публикационной этике - Committee on Publication Ethics (COPE). В процессе издательской деятельности редколлегия журнала руководствуется международными правилами охраны авторского права, нормами действующего законодательства РФ, международными издательскими стандартами и обязательной ссылке на первоисточник.
Журнал позволяет авторам сохранять авторское право без ограничений. Журнал позволяет авторам сохранить права на публикацию без ограничений.
Издательская политика в области авторского права и архивирования определяются «зеленым цветом» в базе данных SHERPA/RoMEO.
Все статьи распространяются на условиях лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная, которая позволяет другим использовать, распространять, дополнять эту работу с обязательной ссылкой на оригинальную работу и публикацию в этом журналe.