NEURAL NETWORK APPROACH IN INFORMATION PROCESS FOR PREDICTING HIGHWAY AREA AIR POLLUTION BY PEAT FIRE

  • Александр Николаевич Васильев Peter the Great Saint-Petersburg Polytechnic University
  • Владимир Николаевич Ложкин St. Petersburg University of State Fire Service of EMERCOM of Russia
  • Ольга Владимировна Ложкина St. Petersburg University of State Fire Service of EMERCOM of Russia
  • Дмитрий Альбертович Тархов Peter the Great Saint-Petersburg Polytechnic University
  • Владимир Дмитриевич Тимофеев St. Petersburg University of State Fire Service of EMERCOM of Russia

Abstract

The diffusion of carbon monoxide from a peat fire in the vicinity of the motorway is presented by the original neural network model with heterogeneous differential data. The methods of model refinement according to the calculation and measurement of carbon monoxide concentration in the smoke cloud area are elaborated. The numerical solutions of the problem are presented in the form of neural network approximations by Gauss models for concentration fields and neural network approximate solutions of partial differential equations for light fraction diffusion. The trained neural network can be used for prediction of an emergency when changing wind speed and direction and fire parameters. The method is recommended in the information processes monitoring the air environment quality.

Author Biographies

Александр Николаевич Васильев, Peter the Great Saint-Petersburg Polytechnic University

доктор технических наук, профессор кафедры Высшая математика Института прикладной математики и механики

Владимир Николаевич Ложкин, St. Petersburg University of State Fire Service of EMERCOM of Russia

Заслуженный деятель науки РФ, доктор технических наук, профессор кафедры пожарной, аварийно-спасательной техники и автомобильного хозяйства

Ольга Владимировна Ложкина, St. Petersburg University of State Fire Service of EMERCOM of Russia

кандидат химических наук, доцент кафедры физико-химических основ процессов горения и тушения

Дмитрий Альбертович Тархов, Peter the Great Saint-Petersburg Polytechnic University

доктор технических наук, профессор кафедры Высшая математика

Владимир Дмитриевич Тимофеев, St. Petersburg University of State Fire Service of EMERCOM of Russia

заместитель начальника 1 курса инженерно-технического факультета, инженер, адъюнкт

References

1. Пучков В.А. О долгосрочных перспективах развития системы МЧС России (МЧС-2030)/ Доклад на заседании экспертного совета МЧС России 30.10.2012 г. [Электронный ресурс]: http://www.region-60.ru/novosti/zhizn/6556029/.
2. Берлянд М.Е. Современные проблемы атмосферной диффузии и загрязнения атмосферы, Л.: Гидрометеоиздат,1975. – 448с.
3. Берлянд М.Е., Генихович Е.Л., Оникул Р.И. Моделирование загрязнения атмосферы выбросами из низких и холодных источников. – Метеорология и гидрология. – 1990. – № 5. – С. 5-16.
4. Общесоюзный нормативный документ «Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий». – Л.: Гидрометеоиздат, 1987. – 93с.
5. Lozhkin V.N., Lozhkina O.V., Ushakov A.A. Using K-Theory in Geographic Information Investigations of Critical-Level Pollution of Atmosphere in the Vicinity of Motor Roads// World Applied Sciences Journal (Problems of Architecture and Construction). 2013. – V. 23. – pp. 1818-4952.
6. Lozhkina O.V., Lozhkin V.N. Estimation of road transport related air pollution in Saint Petersburg using European and Russian calculation models / Journal Contents lists available at Science Direct «Transportation Research Part D», № 36, 2015. – p. 178-189, journal homepage: www.elsevier.com/ locate/t.
7. Сухоиванов А.Ю. Моделирование процессов переноса в атмосфере и воздействия на окружающую среду вредных продуктов горения, образующихся при пожаре: Диссертация на соискание ученой степени к-та техн. наук. – СПб, 2001.
8. Васильев А.Н., Тархов Д.А. Нейросетевое моделирование. Принципы. Алгоритмы. Приложения. – СПб.: Изд-во СПбГПУ, 2009. – 528с.
9. Tarkhov D.A., Vasilyev A.N. New neural network technique to the numerical solution of mathematical physics problems. I: Simple problems// Optical Memory and Neural Networks (Information Optics). – 2005. – V. 14. – pp. 59-72.
10. Tarkhov D.A., Vasilyev A.N. New neural network technique to the numerical solution of mathematical physics problems. II: Complicated and nonstandard problems// Optical Memory and Neural Networks (Information Optics). – 2005. – V. 14. – pp. 97-122.
11. Vasilyev A.N., Tarkhov D.A. Mathematical Models of Complex Systems on the Basis of Artificial Neural Networks. Nonlinear Phenomena in Complex Systems, vol.17 (2014), 3, pp. 327-335.
12. Kainov N.U., Tarkhov D.A., Shemyakina T.A. Application of neural network modeling to identification and prediction in ecology data analysis for metallurgy and welding industry. Nonlinear Phenomena in Complex Systems, vol. 17 (2014), 1, pp. 57-63.
13. Gorbachenko V.I., Lazovskaya T.V., Tarkhov D.A., Vasilyev A.N., Zhukov M.V. Neural Network Technique in Some Inverse Problems of Mathematical Physics// Springer International Publishing Switzerland 2016 L. Cheng et al. (Eds.): ISNN 2016,LNCS 9719, pp.310-316, 2016.
14. Shemyakina T.A., Tarkhov D.A., Vasilyev A.N. Neural Network Technique for Processes Modeling in Porous Catalyst and Chemical Reactor// Springer International Publishing Switzerland 2016 L. Cheng et al. (Eds.): ISNN 2016, LNCS 9719, pp.547-554, 2016.
Published
2016-11-26
How to Cite
ВАСИЛЬЕВ, Александр Николаевич et al. NEURAL NETWORK APPROACH IN INFORMATION PROCESS FOR PREDICTING HIGHWAY AREA AIR POLLUTION BY PEAT FIRE. Modern Information Technologies and IT-Education, [S.l.], v. 12, n. 3-2, p. 181-187, nov. 2016. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/137>. Date accessed: 26 aug. 2025.
Section
Scientific software in education and science